The Atmospheric Chemistry Suite (ACS) package is an element of the Russian contribution to the ESA-Roscosmos ExoMars 2016 Trace Gas Orbiter (TGO) mission. ACS consists of three separate infrared spectrometers, sharing common mechanical, electrical, and thermal interfaces. This ensemble of spectrometers has been designed and developed in response to the Trace Gas Orbiter mission objectives that specifically address the requirement of high sensitivity instruments to enable the unambiguous detection of trace gases of potential geophysical or biological interest. For this reason, ACS embarks a set of instruments achieving simultaneously very high accuracy (ppt level), very high resolving power (>10,000) and large spectral coverage (0.7 to 17 µm-the visible to thermal infrared range). The near-infrared (NIR) channel is a versatile spectrometer covering the 0.7-1.6 µm spectral range with a resolving power of ∼20,000. NIR employs the combination of an echelle grating with an AOTF (Acousto-Optical Tunable Filter) as diffraction order selector. This channel will be mainly operated in solar occultation and nadir, and can also perform limb observations. The scientific goals of NIR are the measurements of water vapor, aerosols, and dayside or night side airglows. The mid-infrared (MIR) channel is a cross-dispersion echelle instrument dedicated to solar occultation measurements in the 2.2-4.4 µm range. MIR achieves a resolving power of >50,000. It has been designed to accomplish the most sensitive measurements ever of the trace gases present in the Martian atmosphere. The thermal-infrared channel (TIRVIM) is a 2-inch double pendulum Fourier-transform spectrometer encompassing the spectral range of 1.7-17 µm with apodized resolution varying from 0.2 to 1.3 cm −1 . TIRVIM is primarily dedicated to profiling temperature from the surface up to ∼60 km and to monitor aerosol abundance in nadir. TIRVIM also has a limb and solar occultation capability. The technical concept of the instrument, its accommodation on the spacecraft, the optical designs as well as some of the calibrations, and the expected performances for its three channels are described.
Venus has thick clouds of H2SO4 aerosol particles extending from altitudes of 40 to 60 km. The 60-100 km region (the mesosphere) is a transition region between the 4 day retrograde superrotation at the top of the thick clouds and the solar-antisolar circulation in the thermosphere (above 100 km), which has upwelling over the subsolar point and transport to the nightside. The mesosphere has a light haze of variable optical thickness, with CO, SO2, HCl, HF, H2O and HDO as the most important minor gaseous constituents, but the vertical distribution of the haze and molecules is poorly known because previous descent probes began their measurements at or below 60 km. Here we report the detection of an extensive layer of warm air at altitudes 90-120 km on the night side that we interpret as the result of adiabatic heating during air subsidence. Such a strong temperature inversion was not expected, because the night side of Venus was otherwise so cold that it was named the 'cryosphere' above 100 km. We also measured the mesospheric distributions of HF, HCl, H2O and HDO. HCl is less abundant than reported 40 years ago. HDO/H2O is enhanced by a factor of approximately 2.5 with respect to the lower atmosphere, and there is a general depletion of H2O around 80-90 km for which we have no explanation.
[1] We present the first comprehensive general circulation model study of water ice condensation and cloud formation in the Martian atmosphere. We focus on the effects of condensation in limiting the vertical distribution and transport of water and on the importance of condensation for the generation of the observed Martian water cycle. We do not treat cloud ice radiative effects, ice sedimentation rates are prescribed, and we do not treat interactions between dust and cloud ice. The model generates cloud in a manner consistent with earlier one-dimensional (1-D) model results, typically evolving a uniform (constant mass mixing ratio) vertical distribution of vapor, which is capped by cloud at the level where the condensation point temperature is reached. Because of this vertical distribution of water, the Martian atmosphere is generally very far from fully saturated, in contrast to suggestions based upon interpretation of Viking data. This discrepancy results from inaccurate representation of the diurnal cycle of air temperatures in the Viking Infrared Thermal Mapper (IRTM) data. In fact, the model suggests that only the northern polar atmosphere in summer is consistently near its column-integrated holding capacity. In this case, the column amount is determined primarily by the temperature of the northern polar ice cap. Comparison of the water cycle generated by the model with and without atmospheric ice condensation and precipitation shows two major roles for water ice cloud. First, clouds are essential to the observed rapid return of atmospheric water to the surface in late northern summer, as ice sedimentation forces the water column to shrink in response to the downward motion of the condensation level, concentrating water near surface sinks. Second, ice sedimentation limits the amount of water that is transported between the hemispheres through the Hadley circulation. This latter effect is used to greatly improve the model simulation of the annual water cycle by increasing ice sedimentation rates. The model is thus shown to be able to reasonably reproduce the annual cycles of vapor and ice cloud as compared to Viking data. In addition, the model is shown able to reproduce near-instantaneous maps of water ice derived from Hubble Space Telescope images. The seasonal evolution of the geographic distribution of water ice compares reasonably well with Viking and Mars Global Surveyor (MGS) Mars Orbiter Laser Altimeter (MOLA) observations, except in the prediction of a weak tropical cloud belt in southern summer. Finally, it is shown that the tropical cloud belt is generated in the model by the cooling of water vapor entrained in the upwelling branch of the Hadley cell. Decline of the tropical cloud belt in mid northern summer is shown to be related to an increase in air temperatures, rather than to decreases in water vapor supply or the vigor of Hadley cell ascent. By equinox, the cloud belt experiences a second major decline event, this time due to a reduction in vapor supply. The ability of the model to emulate...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.