Pressure‐stabilized hydrides are a new rapidly growing class of high‐temperature superconductors, which is believed to be described within the conventional phonon‐mediated mechanism of coupling. Here, the synthesis of one of the best‐known high‐TC superconductors—yttrium hexahydride Im3¯m‐YH6 is reported, which displays a superconducting transition at ≈224 K at 166 GPa. The extrapolated upper critical magnetic field Bc2(0) of YH6 is surprisingly high: 116–158 T, which is 2–2.5 times larger than the calculated value. A pronounced shift of TC in yttrium deuteride YD6 with the isotope coefficient 0.4 supports the phonon‐assisted superconductivity. Current–voltage measurements show that the critical current IC and its density JC may exceed 1.75 A and 3500 A mm−2 at 4 K, respectively, which is higher than that of the commercial superconductors, such as NbTi and YBCO. The results of superconducting density functional theory (SCDFT) and anharmonic calculations, together with anomalously high critical magnetic field, suggest notable departures of the superconducting properties from the conventional Migdal–Eliashberg and Bardeen–Cooper–Schrieffer theories, and presence of an additional mechanism of superconductivity.
Highlights• Superconductivity in fcc-ThH10 at 159-161 K at the pressure 174 Gigapascals • Very wide interval of stability of fcc-ThH10 from 85 to 185 GPa. • Upper critical magnetic field ThH10 ~45 Т. • Novel discovered superhydride hcp-ThH9 with TC of 146 K (170 GPa) and upper critical field ~38 Т • Newly discovered thorium hydrides: I4/mmm-ThH4 and Cmc21-ThH6 Abstract Here we report targeted high-pressure synthesis of two novel high-TC hydride superconductors, P63/mmc-ThH9 and 3 ̅ -ThH10, with the experimental critical temperatures (TC) of 146 K and 159-161 K and upper critical magnetic fields (μHC) 38 and 45 Tesla at pressures 170-175 Gigapascals, respectively. Superconductivity was evidenced by the observation of zero resistance and a decrease of TC under external magnetic field up to 16 Tesla. This is one of the highest critical temperatures that has been achieved experimentally in any compounds, along with such materials as LaH10, H3S and HgBa2CaxCu2O6+z. Our experiments show that fcc-ThH10 has stabilization pressure of 85 GPa, making this material unique among all known high-TC metal polyhydrides. Two recently predicted Th-H compounds, I4/mmm-ThH4 (> 86 GPa) and Cmc21-ThH6 (86-104 GPa), were also synthesized. Equations of state of obtained thorium polyhydrides were measured and found to perfectly agree with the theoretical calculations. New phases were examined theoretically and their electronic, phonon, and superconducting properties were calculated.Graphical Abstract
The recent discovery of high-temperature superconductivity in single-layer
iron selenide has generated significant experimental interest for optimizing
the superconducting properties of iron-based superconductors through the
lattice modification. For simulating the similar effect by changing the
chemical composition due to S doping, we investigate the superconducting
properties of high-quality single crystals of FeSe$_{1-x}$S$_{x}$ ($x$=0, 0.04,
0.09, and 0.11) using magnetization, resistivity, the London penetration depth,
and low temperature specific heat measurements. We show that the introduction
of S to FeSe enhances the superconducting transition temperature $T_{c}$,
anisotropy, upper critical field $H_{c2}$, and critical current density
$J_{c}$. The upper critical field $H_{c2}(T)$ and its anisotropy are strongly
temperature dependent, indicating a multiband superconductivity in this system.
Through the measurements and analysis of the London penetration depth $\lambda
_{ab}(T)$ and specific heat, we show clear evidence for strong coupling two-gap
$s$-wave superconductivity. The temperature-dependence of $\lambda _{ab}(T)$
calculated from the lower critical field and electronic specific heat can be
well described by using a two-band model with $s$-wave-like gaps. We find that
a $d$-wave and single-gap BCS theory under the weak-coupling approach can not
describe our experiments. The change of specific heat induced by the magnetic
field can be understood only in terms of multiband superconductivity.Comment: 13 pages, 7 figure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.