Ultrahigh-throughput screening (uHTS) techniques can identify unique functionality from millions of variants. To mimic the natural selection mechanisms that occur by compartmentalization in vivo, we developed a technique based on single-cell encapsulation in droplets of a monodisperse microfluidic double water-in-oil-in-water emulsion (MDE). Biocompatible MDE enables in-droplet cultivation of different living species. The combination of droplet-generating machinery with FACS followed by next-generation sequencing and liquid chromatography-mass spectrometry analysis of the secretomes of encapsulated organisms yielded detailed genotype/phenotype descriptions. This platform was probed with uHTS for biocatalysts anchored to yeast with enrichment close to the theoretically calculated limit and cell-tocell interactions. MDE-FACS allowed the identification of human butyrylcholinesterase mutants that undergo self-reactivation after inhibition by the organophosphorus agent paraoxon. The versatility of the platform allowed the identification of bacteria, including slowgrowing oral microbiota species that suppress the growth of a common pathogen, Staphylococcus aureus, and predicted which genera were associated with inhibitory activity.ultrahigh-throughput screening | microfluidic encapsulation | butyrylcholinesterase | Staphylococcus aureus | cell-cell interactions T he ultrahigh-throughput (1, 2) technique of screening (uHTS) in a double emulsion was applied in directed enzyme evolution (3, 4) to investigate the idea that a universal genotypephenotype linkage was provided by compartmentalization. Artificial compartments of double emulsions were produced with high polydispersity by shear stress (5, 6), which significantly decreased the portion of uniform droplets and thereby reduced the sensitivity and the maximal sorting rate. By contrast, sophisticated custom sorters demonstrated the screening of precise monodisperse droplets of water-in-oil emulsions generated by microfluidic technology (1, 7). However, it is not always convenient to use custom devices, and the use of oil as a continuous phase limits the sorting rate. Alternatively, compartmentalization in microfluidic double emulsion (MDE) enables uHTS of >10,000 events/s using commercially available cell sorters (8, 9). Furthermore, biocompatible oil and water phases provide viability and proliferation of Escherichia coli cells (10) inside the microenvironment of a double emulsion.Here, we propose an MDE-FACS platform that combines the benefits of previously reported systems based on compartmentalization in MDE and FACS selection together with modern omics (Fig. 1). We succeeded in assembling this platform using commercially available parts, which included straightforward microfluidics (Fig. S1) for MDE generation, multiparametric FACS for uHTS, next-generation sequencing (NGS) for bioinformatic predictions, and mass spectrometry for proteome and secretome analysis. We demonstrated this idea with several single-cell methods (Fig. S2), including the selection of di...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.