Актуальность. Поступление в окружающую среду техногенных радионуклидов при эксплуатации АЭС может привести к их аккумуляции в отдельных звеньях трофической цепи, что повлияет на формирование дозовых нагрузок на население. Сельскохозяйственная продукция и местные продукты питания, производящиеся вблизи АЭС, являются одним из основных источников поступления радионуклидов в организм человека, проживающего в районе размещения атомной электростанции. Цель: оценка современной радиационной обстановки в районе Белоярской АЭС и АО «Институт реакторных материалов» на основе созданной системы радиационно-экологического мониторинга аграрных экосистем. Объекты. Мониторинговые исследования аграрных экосистем проведены в 2013 и 2019 гг. в 30-км зоне вокруг радиационно-опасных объектов. На различном расстоянии и направлениях от них заложены контрольные участки на пашне – 15, лугопастбищных угодьях – 13 и огородах населенных пунктов – 13. На контрольных участках измеряли мощность дозы, отбирали пробы почв, продукции растениеводства, кормопроизводства и продуктов питания. Методы. Всего исследовано в 2013 г. – 137, в 2019 г. – 94 образца. В компонентах агроэкосистем оценивали содержание 40К, 226Ra, 232Th, 90Sr, 137Cs и 239,240Pu. В сельскохозяйственной и пищевой продукции дополнительно определяли 3H и 14C. Результаты. Показано, что содержание 90Sr в почве агроэкосистем в районе радиационно-опасных объектов составляет 4,3…7,2 Бк/кг, 137Cs варьирует в пределах 7,5…18,9 Бк/кг. Диапазон вариации содержания естественных радионуклидов составляет: для 40K 286…432 Бк/кг, для 226Ra 16,1…21,7 Бк/кг, для 232Th 20,1…25,5 Бк/кг. Среднее содержание 239,240Pu в почве агроэкосистем составило 0,13 Бк/кг при вариации 0,07…0,25 Бк/кг. Мощность дозы находилась в диапазоне 0,08…0,13 мкЗв/ч, при среднем 0,10 мкЗв/ч. Уровни загрязнения 137Cs пашни варьировали в пределах: 1,1…3,9 кБк/м2 в 2013 г. и 1,3…2,5 кБк/м2 в 2019 г. Диапазон данных по плотностям загрязнения 137Cs лугопастбищных угодий оказался шире: 1,5…4,5 кБк/м2 в 2013 г. и 1,6…5,2 кБк/м2 в 2019 г. Плотности загрязнения 137Cs почв огородов находились в пределах 0,9…7,7 кБк/м2. Содержание 40K в продукции растениеводства района АЭС варьировало в пределах от 48 до 526 Бк/кг, что определяется видовыми особенностями растений и характеристиками почв, где выращиваются культуры. В продукции кормопроизводства накопление 40K отмечено в диапазоне 260…543 Бк/кг, в продукции животноводства в пределах 18…97 Бк/кг. Удельная активность радионуклидов в зерне отмечена в диапазонах: для 90Sr 1,03…2,8 Бк/кг, для 137Cs 0,15…0,94 Бк/кг. Максимальные уровни накопления 137Cs зафиксированы в ячмене (0,94 Бк/кг) и были ниже норматива СанПиН в 64 раза. Среди овощей, картофеля и бахчевых максимальные уровни удельной активности как 90Sr (0,84 Бк/кг), так и 137Cs (0,26 Бк/кг) отмечались в свекле в 2013 г., однако они были ниже нормативов СанПиН в 45 и 300 раз, соответственно. В соломе зерновых среднее содержание 90Sr варьировало в пределах 2,3…3,6 Бк/кг, 137Cs 0,7…2,1 Бк/кг. В травостое этот диапазон составлял 1,2…3,5 Бк/кг для 90Sr и 0,5…1,8 Бк/кг для 137Cs, соответственно. Максимальные уровни удельной активности 90Sr в соломе (3,6 Бк/кг) оказались в 50 раз ниже норматива по содержанию этого радионуклида в кормах, по 137Cs (2,1 Бк/кг) эта разница составила 190 раз. Максимальные уровни содержания 90Sr в траве (3,5 Бк/кг) были в 14 раз ниже норматива, по 137Cs (1,76 Бк/кг) почти в 56 раз. В 2013 и 2019 гг. динамика содержания техногенных радионуклидов в молоке была разнонаправленной: по 90Sr оно несколько возросло, по 137Cs уменьшилось. Однако даже максимальные значения объемной активности 90Sr (0,41 Бк/л) и 137Cs (0,11 Бк/л) в молоке оказались ниже граничных уровней, установленных нормативами СанПиН в 60 раз по радиостронцию и в 900 раз по радиоцезию. Нормируемое содержание 137Cs в говядине (0,12 Бк/кг) в 2019 г. оказалось более чем в 1,5 тыс. раз ниже требований СанПиН. Показано, что 3H и 14C в сельскохозяйственных и пищевых продуктах в большей степени накапливаются в кормах сельскохозяйственных животных (82…255 Бк/кг), чуть меньше в продовольственном зерне (40…82 Бк/кг). Далее по степени накопления 3H и 14C следуют молоко и картофель (10…95 Бк/кг) и в наименьшей степени данные радионуклиды аккумулируются в овощах (3…8 Бк/кг). Результаты радиационно-экологического мониторинга агроэкосистем показали, что многолетние нормализованные выбросы Белоярской АЭС и АО «Институт реакторных материалов» не привели к регистрируемому увеличению содержания техногенных радионуклидов в почве, сельскохозяйственной продукции и продуктах питания по сравнению с региональным фоном. Отмечена необходимость дальнейшего изучения закономерностей накопления 3H и 14C в сельскохозяйственной и пищевой продукции района размещения АЭС.
Актуальность. Загрязнение экосистем тяжелыми металлами и мышьяком является значимым антропогенным фактором, негативно влияющим на человека и биоту. В Свердловской области, где ведется добыча и переработка минерального сырья, отмечены высокие уровни выбросов в атмосферу поллютантов от стационарных источников, включая тяжелые металлы. Регион также характеризуется многокомпонентным загрязнением территорий техногенными радионуклидами. С 1964 г. в Свердловской области эксплуатируется Белоярская АЭС. Длительная работа промышленных предприятий и радиационно-опасных объектов увеличивает техногенную нагрузку на экосистемы Урала. Цель: оценка содержания тяжелых металлов и мышьяка в почвах наземных экосистем района размещения промышленных предприятий и Белоярской АЭС на основе экологического мониторинга. Объекты. В 2013 и 2019 гг. исследованы почвы природных (луговых) и аграрных (пашня, лугопастбищные угодья) экосистем 30-км зоны влияния Белоярской АЭС. В почвенном покрове изучено содержание 17 элементов, относящихся к I (Pb, Zn, Cd, As, Hg), II (Mo, Cu, Ni, Co, Cr, Sb), III (Sr, Mn, V, W, Ba) классам опасности, а также железо. Методы. Оценку валового содержания тяжелых металлов и мышьяка в почве проводили в испытательной лаборатории агроэкологии ФГБНУ ВНИИРАЭ (аттестат аккредитации RA.RU.513078). Для подготовки почвенных проб к измерениям использовали методы «холодного пара» и «мокрого» озоления с помощью микроволновой системы MARS-5 (CEM, США). Элементы в образцах определяли атомно-абсорбционным и плазменно-эмиссионным методами анализа. Для измерений использовали аксиальный атомно-эмиссионный (оптический) спектрометр с атомизацией проб в индуктивно-связанной плазме (ИСП–ОЭС) Liberty II (Varian, Австралия-США) и спектрометр КВАНТ. Zэта-1 с приставкой ГРГ-3. Результаты. Показано, что за 2013–2019 гг. соотношение элементов в почвенном покрове наземных экосистем района расположения Белоярской АЭС было достаточно стабильным. По снижению валового содержания в почве тяжелые металлы и мышьяк в 2019 г. располагались в ряд: Fe (среднее − 16700 мг/кг) >Mn (879)>Ba (134)>Zn (51)>Ni (35)≥Cr (32)≥V (30)≥Sr (28)>Cu (21)>Pb (12,4)≥Co (11,9)>W (6,7)>Sb (2,4)>As(1,7)≥Mo (1,5)>Cd (0,2)>Hg (0,01 мг/кг). По общему накоплению элементов в почве наземные экосистемы находятся в соотношении: пашня (18,7 г/кг почвы)>луга (14,9 г/кг)>целина (12,6 г/кг). В основном такая разница обусловлена отличиями по содержанию в почве железа, вклад которого в региональный фон составляет 90…95 %. Слабая корреляция между содержанием в почве элементов и расстоянием от Белоярской АЭС (–0,44…0,29 в 2013 г. и –0,29…0,38 в 2019 г.) показала отсутствие значимых выбросов токсикантов в окружающую среду от атомной станции как вследствие ее многолетней работы, так и после начала эксплуатации реактора БН-800. Среди поллютантов I класса опасности, накопленных в почве, доминирует цинк (вклад 76…78 %), на втором месте идет свинец (18…21 %). Во II классе опасности основными почвенными загрязнителями являются никель (45…34 %) и хром (28…30 %). В III классе опасности преобладают марганец (68…81 %) и барий (14…27 %). Показано, что в 25…63 % почвенных проб в районе Белоярской АЭС валовое содержание никеля не отвечает ориентировочно допустимым концентрациям, установленным в СанПиН 1.2.3685−21. Также на всех контрольных участках луговых экосистем превышена предельно-допустимая концентрация по содержанию сурьмы. В 2019 г. в 4…25 % проб почв пашни и лугов отмечено несоответствие предельно-допустимой концентрации по марганцу и в 4…11 % проб почв пашни превышены ориентировочно допустимые концентрации по мышьяку. Уровни накопления в почве ряда тяжелых металлов превышают также региональный фон Свердловской области: по никелю в 25…63 % почвенных образцов природных и аграрных экосистем, по марганцу в 10…50 % проб почв пашни и лугов. Наибольшее количество элементов (в среднем 42 %) аккумулировано в 0−5 см слое почвы. Максимальное накопление в верхнем почвенном горизонте отмечено у кадмия (62 %), мышьяка (49 %) и свинца (48 %), а минимальное у сурьмы (29 %) и марганца (28 %). По общему запасу токсикантов в 0−5 см слое почвы они располагаются в ряд: Cd>As>Pb>Zn>Cu>Mo>Hg>Sr>Ni>Cr>V>W>Co>Ba>Sb>Mn. В более глубоких горизонтах (5−10, 10−15 и 15−20 см) элементы распределены достаточно равномерно. По сравнению с другими техногенно загрязненными регионами России, результаты мониторинга содержания тяжелых металлов и мышьяка в почве района Белоярской АЭС показывают стабильную экологическую обстановку. При планировании дальнейших мониторинговых исследований необходимо обратить внимание на поведение в почве мышьяка, никеля, сурьмы, марганца, кадмия и свинца. Повышенное содержание данных токсикантов в почве может привести к их накоплению в сельскохозяйственной и природной пищевой продукции.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.