Color control of the white photoluminescence (PL) from carbon-incorporated silicon oxide is demonstrated. The carbon-incorporated silicon oxide was fabricated by carbonization of porous silicon in acetylene flow (at 650 and 850 °C) followed by wet oxidation (at 650 and 800 °C). It was shown that PL color can be controlled in the range of blue-white and yellow-white by selecting the porosity of starting porous silicon as well as the carbonization and oxidation temperatures. Low-temperature oxidation resulted in bluish light emission in lower porosity series, while high-temperature oxidation promoted yellow-white light emission. The maximal integral intensity of PL was observed after oxidation at 800 °C. It was shown that white PL from carbon-incorporated silicon oxide has blue and yellow-white PL bands originating from different light-emitting centers. The origin of blue PL is attributed to defects in silicon dioxide. Some trap levels at the interface of the carbon clusters and silicon oxide are suggested to be the origin of the yellow-white light emission.
Graphene oxide (GO) films were formed by drop-casting method and were studied by FTIR spectroscopy, micro-Raman spectroscopy (mRS), X-ray photoelectron spectroscopy (XPS), four-points probe method, atomic force microscopy (AFM), and scanning Kelvin probe force (SKPFM) microscopy after low-temperature annealing at ambient conditions. It was shown that in temperature range from 50 to 250 °C the electrical resistivity of the GO films decreases by seven orders of magnitude and is governed by two processes with activation energies of 6.22 and 1.65 eV, respectively. It was shown that the first process is mainly associated with water and OH groups desorption reducing the thickness of the film by 35% and causing the resistivity decrease by five orders of magnitude. The corresponding activation energy is the effective value determined by desorption and electrical connection of GO flakes from different layers. The second process is mainly associated with desorption of oxygen epoxy and alkoxy groups connected with carbon located in the basal plane of GO. AFM and SKPFM methods showed that during the second process, first, the surface of GO plane is destroyed forming nanostructured surface with low work function and then at higher temperature a flat carbon plane is formed that results in an increase of the work function of reduced GO.Electronic supplementary materialThe online version of this article (10.1186/s11671-018-2536-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.