We implemented the common-path achromatic interfero-coronagraph both for the wavefront sensing and the on-axis image component suppression, aiming for the stellar coronagraphy. A common-path achromatic interfero-coronagraph has its optical scheme based on a nulling rotational-shear interferometer. The angle of rotational shear can be chosen at a small angular extent of about 10 deg. Such a small angular shear maintains the coronagraphic contrast degradation known as the stellar leakage effect, caused by a finite stellar size. We study the phase and amplitude wavefront control by a liquid crystal spatial light modulator of reflection type which is used as the pixilated active adaptive optics unit. Therefore, adaptive optics perform a wavefront-correcting input toward a stellar interfero-coronagraph aiming at the direct exoplanet imaging. Presented here are both the numeric evaluations and the lab experiment stand to prove the declared functionality output.
The World Space Observatory for Ultraviolet (WSO-UV) is an orbital optical telescope with a 1.7 mdiameter primary mirror currently under development. The WSO-UV is aimed to operate in the 115-310 nm UV spectral range. Its two major science instruments are UV spectrographs and a UV imaging field camera with filter wheels. The WSO-UV project is currently in the implementation phase, with a tentative launch date in 2023. As designed, the telescope field of view (FoV) in the focal plane is not fully occupied by instruments. Recently, two additional instruments devoted to exoplanets have been proposed for WSO-UV, which are the focus of this paper. UVSPEX, a UV-Spectrograph for Exoplanets, aims to determine atomic hydrogen and oxygen abundance in the exospheres of terrestrial exoplanets. The spectral range is 115-130 nm which enables simultaneous measurement of hydrogen and oxygen emission intensities during an exoplanet transit. Study of exosphere transit photometric curves can help differentiate among different types of rocky planets. The exospheric temperature of an Earth-like planet is much higher than that of a Venus-like planet, because of the low mixing ratio of the dominant coolant (CO2) in the upper atmosphere of the former, which causes a large difference in transit depth at the oxygen emission line. Thus, whether the terrestrial exoplanet is Earth-like, Venus-like, or other can be determined. SCEDI, a Stellar Coronagraph for Exoplanet Direct Imaging is aimed to directly detect the starlight reflected from exoplanets orbiting their parent stars or from the stellar vicinity including circumstellar discs, dust, and clumps. SCEDI will create an achromatic (optimized to 420-700 nm wavelength range), high-contrast stellocentric coronagraphic image of a circumstellar vicinity. The two instruments: UVSPEX and SCEDI, share common power and control modules. The present communication outlines the science goals of both proposed instruments and explains some of their engineering features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.