The formation of hollow nanoparticles of alumina was detected when nanostructured carbon-aluminum material, synthesized by composite electrode sputtering in an electric arc, was annealed in oxygen. The synthesized material was characterized by the methods of transmission electron microscopy, thermogravimetry, and roentgen-phase analysis. It is shown that the alumina is the γ-phase; the typical size of particles is 6 -12 nm and they have a wall thickness of 2 -3 nm. The mechanism of formation of the hollow nanoparticles of alumina is suggested.
Experimental investigations of the possibility of arc discharge method for synthesis of nanoparticles of oxides and carbides of tungsten and aluminum have been presented. The method is based on anode atomization of composed graphite – aluminum and graphite – WO3 electrodes. The transmitted electron microscopy, thermal gravimetric analysis and X-ray diffraction were applied for the characterization of morphology and properties of synthesized materials. It was experimentally shown the arc discharge method allows to syntheses the nanoparticles of oxides and carbides of tungsten and aluminum
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.