The effects of H290/51, a novel indenoindole derivative inhibitor of lipid peroxidation, on ultrastructural changes during cardiac ischemia-reperfusion injury were investigated. Langendorff-perfused rat hearts were exposed to 30 minutes of global ischemia followed by 20 minutes of reperfusion: Group A: Control hearts with standard buffer perfusion with vehicle added. Group B: H290/51 (10(-6) mol/l) added to buffer throughout stabilisation and reperfusion. In an additional Group C, where hearts were given H290/51, but not subjected to ischemia, the ultrastructure was preserved till the end of reperfusion. Absolute volumes and calculated volume fractions (Vv) of tissue and subcellular components were assessed with quantitative stereologic morphometry. After ischemia the increase in volume of extracellular interstitium was inhibited by H290/51 (247 +/- 80 vs. 159 +/- 50 microl, mean +/- SD, groups A and B, respectively, p<0.05). The Vv (interstitium/myocard) was higher in control hearts (0.318 +/- 0.062 vs. 0.206 +/- 0.067, p<0.05). Vv (cell edema/myocyte) was higher in the control group (0.144 +/- 0.07 vs. 0.083 +/- 0.033, p<0.05). Vv (myocyte/myocard) was higher in group B after ischemia than in the control group (0.622 +/- 0.071 vs. 0.707 +/- 0.052, p<0.05). The decreased Vv (capillary/myocard) after ischemia was inhibited by H290/51. After reperfusion there was no difference between groups. Treatment with H290/51 reduced edema and ensured better preserved sarcolemmal membrane structure during ischemia. The effect was no longer present after reperfusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.