We report an investigation on the optical properties of three-dimensional nanoclusters (NCs) made by spherical constellations of metallic nanospheres arranged around a central dielectric sphere, which can be realized and assembled by current state-of-the-art nanochemistry techniques. This type of NCs supports collective plasmon modes among which the most relevant are those associated with the induced electric and magnetic resonances. Combining a single dipole approximation for each nanoparticle and the multipole spherical-wave expansion of the scattered field, we achieve an effective characterization of the optical response of individual NCs in terms of their scattering, absorption, and extinction efficiencies. By this approximate model we analyze a few sample NCs identifying the electric and magnetic resonance frequencies and their dependence on the size and number of the constituent nanoparticles. Furthermore, we discuss the effective electric and magnetic polarizabilities of the NCs, and their isotropic properties. A homogenization method based on an extension of the Maxwell Garnett model to account for interaction effects due to higher order multipoles in dense packed arrays is applied to a distribution of NCs showing the possibility of obtaining metamaterials with very large, small, and negative values of permittivity and permeability, and even negative index.
The properties and characteristics of a recently proposed anisotropic metamaterial based upon layered arrays of tightly coupled pairs of "dogbone" shaped stripe conductors have been explored in detail. It has been found that a metamaterial composed of such stacked layers exhibits artificial magnetism and may support backward wave propagation. The equivalent network models of the constitutive conductor pairs arranged in the periodic array have been devised and applied to the identification of the specific types of resonances, and to the analysis of their contribution into the effective dielectric and magnetic properties of the artificial medium. The proposed "dogbone" configuration of conductor pairs has the advantage of being entirely realizable and assemblable in planar technology. It also appears more prospective than simple cut-wire or metal-plate pairs because the additional geometrical parameters provide an efficient control of separation between the electric and magnetic resonances that, in turn, makes it possible to obtain a fairly broadband left-handed behaviour of the structure at low frequencies.
Low profile fully planar folded dipole antenna on a high impedance surface Abstract-A fully planar antenna design incorporating a high impedance surface (HIS) is presented. The HIS is composed by a periodic array of subwavelength dogbone-shaped conductors printed on top of a thin dielectric substrate and backed by a metallic ground plane. First, the characteristics of a dipole over PEC or PMC layers, a dielectric slab, and the HIS are compared and studied in detail, highlighting the advantages provided by the use of the HIS. Then, the design of a low profile folded dipole antenna working at 5.5 GHz on top of the HIS is described. The surface provides close to 6% antenna impedance bandwidth and increased gain up to 7 dBi, while shielding the lower half space from radiation. The antenna structure comprises three metal layers without any vias between them, and its overall thickness is . The dipole is fed by a balanced twin lead line through a balun transformer integrated in the same antenna layer. A prototype has been built and measurements confirming simulation results are provided.Index Terms-AMC ground plane, artificial magnetic conductor, artificial magnetism, artificial substrate, impedance surface, low profile antenna, metamaterials, reflection phase.
We present a full experimental characterization of isotropic artificial optical magnetism at visible frequencies produced by "raspberrylike" plasmonic nanoclusters synthesized by a bottom-up approach. Experimental measurements of extinction and light scattering associated with numerical simulations enable one to extract absolute values of the magnetic scattering cross section across the whole visible spectral range. The strength of the resonant magnetic response of a single magnetic nanocluster is illustrated as the effective magnetic permeability of a homogeneous sphere of identical volume.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.