Bcl-2 mRNA expression was detected in rat blastocysts by in situ hybridization. The distribution of mRNA expression was rather heterogenous, with ~2% of highexpressing cells. In vitro exposure to 28 mmol/l D-glucose for 24 h resulted in a significant increase in the proportion of these cells compared with control embryos in either 6 mmol/l D-glucose or 28 mmol/l D+L-glucose. Heterogeneity in the expression of Bcl-2 was also observed at the protein level by immunocytochemistry. Exposure to 28 mmol/l D-glucose significantly increased the incidence of chromatin degradation (karyolysis) and nuclear fragmentation (karyorhexis), two nuclear markers of apoptosis in rat blastocysts. When two different antisense oligodeoxynucleotides designed to block Bcl-2 expression were added to 28 mmol/l D-glucose, the incidence of karyolysis (but not karyorhexis) was increased compared with embryos in 28 mmol/l D-glucose alone. These data suggest that Bcl-2 is involved in the protective response against the induction of karyolysis in blastocysts on their exposure to high concentrations of D-glucose in vitro, whereas karyorhexis appears to result from the activation of an intracellular pathway that is independent of Bcl-2.
The cellular distribution of beta-catenin was determined by western blotting and laser confocal scanning microscopy in both control and pharmacologically-manipulated mouse preimplantation embryos. Most of the stored maternal beta-catenin is Triton X-100-extractable and distributed throughout the cytoplasm. In 2-cell stage embryos, the remaining molecules are concentrated in regions of cell contact and, to a lesser extent, at non apposed surfaces. Association of beta-catenin with the cortex of non apposed membranes decreases as cleavage proceeds, and is lost at compaction. In contrast to the rapid cross-linking of cell surfaces induced by wheat germ agglutinin, the diacylglyceride-induced compaction-like adhesion of 2- and 4-cell embryos correlates with complete restriction of beta-catenin to the apposing membranes. On the contrary, tyrphostin B46, a specific protein tyrosine kinase inhibitor, fails to induce both premature beta-catenin relocalisation and compaction. In addition, we show that orthovanadate induces a dramatic increase in the level of phosphotyrosine labelling of cell-cell junctions in compacted 8-cell stage embryos without inducing their decompaction. However, most of these orthovanadate tyrosine-phosphorylated proteins are detergent-soluble, while beta-catenin restricted to the apposing membranes is not. In conclusion, our results confirm that diacylglycerol-dependent kinases upregulate both beta-catenin redistribution and compaction, and indicate that neither tyrosine kinases, nor tyrosine phosphatases are critical for the proper onset of compaction which seems, in addition, not causally linked to tyrosine dephosphorylation of beta-catenin.
Estrogen-induced Syrian hamster kidney tumors (SHKT) are widely used as experimental models for the study of hormonal and renal carcinogenesis. In order to characterize the direction of differentiation of SHKT, kidney sections of diethylstilbestrol (DES)-treated hamsters (1-11 months) were analyzed by immunohistochemistry using a panel of lineage-specific markers. The first tumorous buds found in animals exposed to DES for 4-6 months exhibited prominent S100, Leu-7, and vimentin immunoreactivities. Immunopositivities for neuron-specific enolase, PGP 9.5, desmin, and glial fibrillary acidic protein were mostly detected in medium-sized and large tumors after prolonged exposure to DES (>6 months). All neoplasms, irrespective of the size and the duration of treatment, appeared negative for cytokeratin, neurofilaments, synaptophysin, and CD99 antibodies. Western blotting confirmed to a large extent the immunohistochemical observations. The systematic analysis of serial kidney sections by confocal microscopy after double immunostaining for S100 and neurofilaments revealed that early neoplastic buds could stem from S100-positive cells associated with nerves bundles. Altogether, these observations suggest that DES-induced SHKT could be related to malignant peripheral nerve sheath tumor and originate from a yet unidentified precursor cell present in the sheath of peripheral nerves.
A pulse of thimerosal (TMS), a sulfhydryl reagent, induces an instantaneous, complete and long-lasting microtubule interphasic network disassembly in mouse primary oocytes, correlated with the irreversible inhibition of meiosis reinitiation This inhibition is bypassed by dithiothreitol (DTT) while thiosalicylic acid, an analog of TMS, does induce neither microtubules depolymerisation nor inhibition of reinitiation and resumption of meiosis. This strongly suggests that the dramatic and pleiotropic inhibitory effect of TMS is specifically related to its sulfhydryl group oxidising activity of critical molecules among which tubulin. In contrast to DTT, okadaic acid (OA), known to bypass the inhibitory effect of drugs interfering with protein kinase activities, induces a late chromatin condensation and GVBD in TMS-pulsed oocytes as compared to the control situation, with no significant concomitant microtubule assembly. These cytological features are suggested to be indirectly induced by a late MAPK activation and confirm that a very early thiol oxidation induced by TMS exerts a much more dramatic effect on resumption of meiosis than any pharmacological manipulation of protein kinase activities leading to activation of MPF. Finally, taxol was shown to promote tubulin polymerisation even when microtubules were irreversibly disassembled by thiol oxidation but fails to restore the ability to undergo maturation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.