Background. Multidrug-and extensively drug-resistant tuberculosis (MDR-TB and XDR-TB) threaten local and global control of the disease. The molecular line-probe assay (LPA) provides rapid diagnosis and early management of MDR-TB. The LPA detects mutations of katG and inhA genes associated with isoniazid (INH) resistance in Mycobacterium tuberculosis isolates. The katG and inhA genes are associated with high-and low-level INH resistance, respectively, as well as cross-resistance to ethionamide in the case of inhA gene mutations. Patients with MDR-TB due to an inhA mutation could benefit from the use of high-dose INH -instead of ethionamide -in their MDR-TB regimen. Objectives. To determine the frequencies of katG and inhA mutations that conferred INH resistance among MDR-TB isolates during 2014 -2016 in Free State (FS) Province of South Africa. Methods. We retrospectively reviewed MDR-TB isolates assayed with GenoType MTBDRplus (Hain Lifescience, Germany) (LPA) at the central TB laboratory of Universitas Academic Hospital, Bloemfontein, FS, and calculated the frequencies of katG and inhA mutations. Results. Among 918 MDR-TB isolates, the prevalence of katG, inhA and katG plus inhA mutations was 63.9%, 13.4% and 22.7%, respectively. Approximately 60% (n=536; 58.4%) of the isolates were obtained from male patients. The patients' ages ranged from 1 to 89 (median 37) years. The Xhariep district had the highest incidence of INH resistance-conferring mutations in the province. Conclusions. katG-associated mutations are the predominant INH resistance-conferring mechanism among MDR-TB isolates in the FS. Patients infected with isolates that harbour the katG mutation are unlikely to benefit from high-dose INH therapy in the bedaquiline (BDQ)-containing modified short MDR-TB regimen. They may, however, benefit from the inclusion of ethionamide in the regimen. Dual katG and inhA gene mutations make these patients unlikely to respond to either high-dose INH or ethionamide and should now be considered for either the BDQ-containing long MDR-TB regimen or an individualised treatment regimen, depending on fluoroquinolone susceptibility. Clinicians should familiarise themselves with interpreting various INH resistance-conferring mutation results and their implications for management of MDR-TB treatment.S Afr Med J 2019;109(9):659-664. https://doi.
Tuberculosis is a serious public health concern especially in Africa and Asia. Studies describing strain diversity are lacking in the Free State region of South Africa. The aim of the study was to describe the diversity of Mycobacterium tuberculosis (M. tuberculosis) strain families in the Free State province of South Africa. A total of 86 M. tuberculosis isolates were genotyped using spoligotyping. A 12-locus mycobacterial interspersed repetitive units-variable-number tandem repeats (MIRU-VNTRs) typing was used to further characterize the resulting spoligotyping clusters. SITVITWEB identified 49 different patterns with allocation to six lineages including Latin-American-Mediterranean (LAM) (18 isolates), T (14 isolates), Beijing (five isolates), S (six isolates), Haarlem (one isolate), and X (five isolates), while 37 (43.0%) orphans were identified. Eight clusters included 37 isolates with identical spoligotypes (2 to 13/cluster). MIRU-VNTR typing further differentiated three spoligotyping clusters: SIT1/Beijing/MIT17, SIT33/LAM3/MIT213, and confirmed one SIT34/S/MIT311. In addition, SpolDB3/RIM assignment of the orphan strains resulted in a further 10 LAM and 13 T families. In total, LAM (28 isolates) and T (27 isolates) cause 63% of the individual cases of MTB in our study. The Free State has a highly diverse TB population with LAM being predominant. Further studies with inclusion of multidrug-resistant strains with larger sample size are warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.