This report presents the results of steady-state and time-resolved luminescence measurements performed on suspensions of nanocrystalline ZnO particles of different sizes and at different temperatures. In all cases two emission bands are observed. One is an exciton emission band and the second an intense and broad visible emission band, shifted by approximately 1.5 eV with respect to the absorption onset. As the size of the particles increases, the intensity of the visible emission decreases while that of the exciton emission increases. As the temperature decreases, the relative intensity of the exciton emission increases. In accordance with the results presented in a previous paper, we assume that the visible emission is due to a transition of an electron from a level close to the conduction band edge to a deeply trapped hole in the bulk (V O•• ) of the ZnO particle. The temperature dependence and size dependence of the ratio of the visible to exciton luminescence and the kinetics are explained by a model in which the photogenerated hole is transferred from the valence band to a V O• level in the bulk of the particle in a two-step process. The first step of this process is an efficient surface trapping, probably at an O 2site.
A series of novel carbazole compounds was synthesized and tested for their suitability as host for triplet emitters in an organic-light emitting diode (OLED). In these compounds, a carbazole unit is either connected to other carbazole units to form carbazole dimers and trimers or to fluorene and oxadiazole derivatives to form mixed compounds. The HOMO level of carbazole compounds can be tuned by substitution at the 3, 6, and/or 9 positions. Making oligomers by connecting carbazole molecules via their 3 (3') positions shifts the HOMO level to higher energy, while replacing alkyl groups at the 9 (9') positions by aryl groups shifts the HOMO level to lower energy. Furthermore, it has been found that the triplet energy of these compounds is determined by the presence of poly(p-phenyl) chains in the molecular structure. By identifying the longest poly(p-phenyl) chain, one can predict whether a compound will be a suitable host for a high-energy triplet emitter. An overview of HOMO levels, singlet and triplet levels, and exchange energies is given for all carbazole compounds synthesized. Finally, OLEDs employing two selected carbazole compounds as host and fac-tris(2-phenylpyridine)-iridium (Ir(ppy)(3)) as guest were constructed and characterized electrically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.