We report on the development and application of a rapid assay for detecting and typing dengue viruses. Oligonucleotide consensus primers were designed to anneal to any of the four dengue virus types and amplify a 511-bp product in a reverse transcriptase-polymerase chain reaction (PCR). First, we produced a cDNA copy of a portion of the viral genome in a reverse transcriptase reaction in the presence of primer D2 and then carried out a standard PCR (35 cycles of heat denaturation, annealing, and primer extension) with the addition of primer Dl. The resulting double-stranded DNA product of the RT-PCR was typed by two methods: dot blot hybridization of the 511-bp amplified product to dengue virus type-specific probes or a second round of PCR amplification (nested PCR) with type-specific primers, yielding DNA products the unique sizes of which were diagnostic for each dengue virus serotype. The accumulated data demonstrated that dengue viruses can be accurately detected and typed from viremic human serum samples.
Abstract. The co-circulation of all 4 dengue virus serotypes in the same community, common since the 1950s in Southeast Asia, has now become a frequent occurrence in many Caribbean Islands, Mexico, and Central and South America in the past 20 years. As a consequence, the frequency of concurrent infections would be expected to increase in these areas. To assess this, using state of the art technology, we screened viremic serum samples and mosquitoes inoculated with serum samples collected during epidemics involving multiple dengue virus serotypes in Indonesia, Mexico, and Puerto Rico for virus isolation. Of 292 samples tested, 16 (5.5%) were found to contain 2 or more dengue viruses by an indirect immunofluorescence test and/or the reverse transcriptase-polymerase chain reaction.The global epidemiology of dengue/dengue hemorrhagic fever (DF/DHF) has changed dramatically in the past 50 years, first in Southeast Asia during and following World War II, and in the past 20 years in other tropical regions of the world, especially in the Americas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.