Site-specific substitutions of arginine for lysine in the thermostable D-xylose isomerase (XI) from Actinoplanes missouriensis are shown to impart significant heat stability enhancement in the presence of sugar substrates most probably by interfering with nonenzymatic glycation. The same substitutions are also found to increase heat stability in the absence of any sugar derivatives, where a mechanism based on prevention of glycation can no longer be invoked. This rather conservative substitution is moreover shown to improve thermostability in two other structurally unrelated proteins, human copper, zinc-superoxide dismutase (CuZnSOD) and D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Bacillus subtilis. The stabilizing effect of Lys----Arg substitutions is rationalized on the basis of a detailed analysis of the crystal structures of wild-type XI and of engineered variants with Lys----Arg substitution at four distinct locations, residues 253, 309, 319, and 323. Molecular model building analysis of the structures of wild-type and mutant CuZnSOD (K9R) and GAPDH (G281K and G281R) is used to explain the observed stability enhancement in these proteins. In addition to demonstrating that even thermostable proteins can lend themselves to further stability improvement, our findings provide direct evidence that arginine residues are important stabilizing elements in proteins. Moreover, the stabilizing role of electrostatic interactions, particularly between subunits in oligomeric proteins, is documented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.