We show that a spatially well-defined layer of boron dopants in a hydrogen-enriched silicon target allows the production of a high yield of alpha particles of around 10 9 per steradian using a nanosecond, low-contrast laser pulse with a nominal intensity of approximately 3 × 10 16 W cm. This result can be ascribed to the nature of the long laser-pulse interaction with the target and with the expanding plasma, as well as to the optimal target geometry and composition. The possibility of an impact on future applications such as nuclear fusion without production of neutron-induced radioactivity and compact ion accelerators is anticipated.
The interaction of laser pulses with thin grating targets, having a periodic groove at the irradiated surface, is experimentally investigated. Ultrahigh contrast (~10(12)) pulses allow us to demonstrate an enhanced laser-target coupling for the first time in the relativistic regime of ultrahigh intensity >10(19) W/cm(2). A maximum increase by a factor of 2.5 of the cutoff energy of protons produced by target normal sheath acceleration is observed with respect to plane targets, around the incidence angle expected for the resonant excitation of surface waves. A significant enhancement is also observed for small angles of incidence, out of resonance.
Multi-MeV beams of light ions have been produced using the 300 picosecond, kJ-class iodine laser, operating at the Prague Asterix Laser System facility in Prague. Real-time ion diagnostics have been performed by the use of various time-of-flight (TOF) detectors: ion collectors (ICs) with and without absorber thin films, new prototypes of single-crystal diamond and silicon carbide detectors, and an electrostatic ion mass spectrometer (IEA). In order to suppress the long photopeak induced by soft X-rays and to avoid the overlap with the signal from ultrafast particles, the ICs have been shielded with Al foil filters. The application of large-bandgap semiconductor detectors (>3 eV) ensured cutting of the plasma-emitted visible and soft-UV radiation and enhancing the sensitivity to the very fast proton/ion beams. Employing the IEA spectrometer, various ion species and charge states in the expanding laser-plasma have been determined. Processing of the experimental data based on the TOF technique, including estimation of the plasma fast proton maximum and peak energy, ion beam currents and total charge, total number of fast protons, as well as deconvolution processes, ion stopping power, and ion/photon transmission calculations for the different metallic filters used, are reported.
A linear accelerator based source of coherent radiation, FLASH (Free-electron LASer in Hamburg) provides ultra-intense femtosecond radiation pulses at wavelengths from the extreme ultraviolet (XUV; lambda<100nm) to the soft X-ray (SXR; lambda<30nm) spectral regions. 25-fs pulses of 32-nm FLASH radiation were used to determine the ablation parameters of PMMA - poly (methyl methacrylate). Under these irradiation conditions the attenuation length and ablation threshold were found to be (56.9+/-7.5) nm and approximately 2 mJ*cm(-2), respectively. For a second wavelength of 21.7 nm, the PMMA ablation was utilized to image the transverse intensity distribution within the focused beam at mum resolution by a method developed here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.