Viscous dissipation acts as an energy source and alters the temperature distribution, and extremely shear flows impact the fluid flow structure. Thus, the current study analyses the three-dimensional rotating Casson fluid flow across a linear extending sheet in the existence of internal energy and porous medium. The controlling equations for velocity, concentration, and energy of the steady flow are provided and simplified using the similarity transformations. The three-staged collocation technique, namely Lobatto III A was implemented in conjunction with MATLAB to solve the resulting equations. The physical characteristics of the relevant quantities were explained with the support of graphs. It was noticed that the velocity component decreased with the rise in the porosity parameter. For the improved values of the Eckert number, the temperature component increased. The influence of Eckert number, Casson parameter etc. on the Skin friction, the Nusselt number and the Sherwood number were assessed.
Natural convection occurs in fluid environments. Usually, it is facilitated by the buoyancy effect. It is significantly less efficient than forced convection, due to the lack of fluid motion. As a result, it is completely dependent on the buoyancy effect's strength and the fluid's viscosity. The current work investigates the convective flow of a three-dimensional Casson fluid across a rotating linear expanding sheet. The nonlinear governing equations of the steady flow were presented and reconstructed using appropriate similarity transformations. To solve the resultant equations, the three-stage collocation approach namely Lobatto IIIA was applied using MATLAB. Graphs were used to illustrate the physical properties of the required data. It was observed that while the primary velocity profile decreases as the Casson, convective, and rotational parameters increase, the secondary velocity profile exhibits the opposite behaviour. The effect of rotation, Casson parameter, and others on drag coefficient, heat transfer coefficient, and mass transfer coefficient was evaluated, interpreted, and found to be reasonably consistent with earlier research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.