Every organization in this digital age is expected to exponentially increase its digital data due to generations from machines. The advanced computations of Big Data are now showing various opportunities for the researchers who work on security enhancements to ensure the efficient accessibility of the data stores. Our research work aims to derive a Fusion-based Advanced Encryption Algorithm (FAEA) for a cost-optimized satisfiable security model toward the usage of Big Data in the cloud. The FAEA method is evaluated for its performance toward efficiency, scalability, and security and proved to be 98% ahead of the existing methods of Security Hadoop Distributed File System Sec (HDFS) and Map Reduce Encryption Scheme (MRE). On the other hand, this work aims to address the problems of usage of Big Data in the cloud toward the sole solution, cost-effective solutioning, and proof of ownership. The outcome analysis of FAEA revolves around addressing these three major problems. This research work would be much helpful for the IT industries to manage Big Data in Cloud with security aspects for the decade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.