We consider the non-canonical Hamiltonian dynamics of a gyrostat in Newtonian interaction with n spherical rigid bodies. Using the symmetries of the system we carry out two reductions. Then, working in the reduced problem, we obtain the equations of motion, a Casimir function of the system and the equations that determine the relative equilibria. Global conditions for existence of relative equilibria are given. Besides, we give the variational characterization of these equilibria and three invariant manifolds of the problem; being calculated the equations of motion in these manifolds, which are described by means of a canonical Hamiltonian system. We give some Eulerian and Lagrangian equilibria for the four body problem with a gyrostat. Finally, certain classical problems of Celestial Mechanics are generalized.
The problem of two gyrostats in a central force field is considered. We prove that the Newton-Euler equations of motion are Hamiltonian with respect to a certain non-canonical structure. The system posseses symmetries. Using them we perform the reduction of the number of degrees of freedom. We show that at every stage of the reduction process, equations of motion are Hamiltonian and give explicit forms corresponding to non-canonical Poissson brackets. Finally, we study the case where one of the gyrostats has null gyrostatic momentum and we study the zero and the second order approximation, showing that all equilibria are unstable in the zero order approximation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.