Robust control of pathogens in sewage facilitates safe reuse of wastewater rich in valuable nutrients for potential valorization through biological means. Aspergillus niger is widely reported in bioremediation of wastewater but studies on control of enteric pathogens in sewage are very sparse. So, this study aimed at exploring the antibacterial and nematicidal activity of A. niger culture filtrate (ACF). Antibacterial activity of ACF on enteric pathogens (Klebsiella pneumoniae, Pseudomonas aeruginosa, Vibrio cholerae, Salmonella enterica, Shigella dysenteriae, Escherichia coli, Staphylococcus aureus, Klebsiella variicola) was determined by spectrophotometric growth analysis, resazurin based viability assay and biofilm formation assay. ACF showed inhibition against all enteric pathogens except Pseudomonas aeruginosa. Nematicidal studies on Caenorhabditis elegans showed 85% egg hatch inhibition and 52% mortality of L1 larvae. Sewage treatment with ACF at 1:1 (v/v) showed 2–3 log reduction in coliforms, Klebsiella, Shigella, Salmonella, S. aureus and Vibrio except Pseudomonas, indicating significant alteration of complex microbial dynamics in wastewater. Application of ACF can potentially be used as a robust biocontrol strategy against infectious microbes in wastewater and subsequent valorization by cultivating beneficial Pseudomonas.
Background: Chitin is the main component of fungal, protozoan and helminth cell wall. They help to maintain the structural and functional characteristics of these organisms. The chitin wall is dynamic and is repaired, rearranged and synthesized as the cells develop. Active synthesis can be noticed during cytokinesis, laying of primary septum, maintenance of lateral cell wall integrity and hyphal tip growth. Chitin synthesis involves coordinated action of two enzymes namely, chitin synthase (that lays new cell wall) and chitinase (that removes the older ones). Since chitin synthase is conserved in different eukaryotic microorganisms that can be a ‘soft target’ for inhibition with small molecules. When chitin synthase is inhibited, it leads to the loss of viability of cells owing to the self- disruption of the cell wall by existing chitinase. Methods: In the described study, small molecules from plant sources were screened for their ability to interfere with hyphal tip growth, by employing Hyphal Tip Burst assay (HTB). Aspergillus niger was used as the model organism. The specific role of these small molecules in interfering with chitin synthesis was established with an in-vitro method. The enzyme required was isolated from Aspergillus niger and its activity was deduced through a novel method involving non-radioactively labelled substrate. The activity of the potential lead molecules were also checked against Candida albicans and Caenorhabditis elegans. The latter was adopted as a surrogate for the pathogenic helminths as it shares similarity with regard to cell wall structure and biochemistry. Moreover, it is widely studied and the methodologies are well established. Results: Out of the 11 compounds and extracts screened, 8 were found to be prospective. They were also found to be effective against Candida albicans and Caenorhabditis elegans. Conclusion: Purified Methyl Ethyl Ketone (MEK) Fraction1 (F1) of Coconut (Cocos nucifera) Shell Extract (COSE) was found to be more effective against Candida albicans with an IC50 value of 3.04 μg/mL and on L4 stage of Caenorhabditis elegans with an IC50 of 77.8 μg/mL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.