We report on the construction and performance of a novel photoelectron-photoion coincidence machine in our laboratory in Amsterdam to measure the full three-dimensional momentum distribution of correlated electrons and ions in femtosecond time-resolved molecular beam experiments. We implemented sets of open electron and ion lenses to time stretch and velocity map the charged particles. Time switched voltages are operated on the particle lenses to enable optimal electric field strengths for velocity map focusing conditions of electrons and ions separately. The position and time sensitive detectors employ microchannel plates (MCPs) in front of delay line detectors. A special effort was made to obtain the time-of-flight (TOF) of the electrons at high temporal resolution using small pore (5 microm) MCPs and implementing fast timing electronics. We measured the TOF distribution of the electrons under our typical coincidence field strengths with a temporal resolution down to sigma=18 ps. We observed that our electron coincidence detector has a timing resolution better than sigma=16 ps, which is mainly determined by the residual transit time spread of the MCPs. The typical electron energy resolution appears to be nearly laser bandwidth limited with a relative resolution of DeltaE(FWHM)/E=3.5% for electrons with kinetic energy near 2 eV. The mass resolution of the ion detector for ions measured in coincidence with electrons is about Deltam(FWHM)/m=14150. The velocity map focusing of our extended source volume of particles, due to the overlap of the molecular beam with the laser beams, results in a parent ion spot on our detector focused down to sigma=115 microm.
We have studied electron emission from the H(2)(+) ion by a circularly polarized laser pulse (800 nm, 6×10(14) W/cm(2)). The electron momentum distribution in the body fixed frame of the molecule is experimentally obtained by a coincident detection of electrons and protons. The data are compared to a solution of the time-dependent Schrödinger equation in two dimensions. We find radial and angular distributions which are at odds with the quasistatic enhanced ionization model. The unexpected momentum distribution is traced back to a complex laser-driven electron dynamics inside the molecule influencing the instant of ionization and the initial momentum of the electron.
In 1997, it was predicted that an electronically excited atom or molecule placed in a loosely bound chemical system (such as a hydrogen-bonded or van-der-Waals-bonded cluster) could efficiently decay by transferring its excess energy to a neighbouring species that would then emit a low-energy electron. This intermolecular Coulombic decay (ICD) process has since been shown to be a common phenomenon, raising questions about its role in DNA damage induced by ionizing radiation, in which low-energy electrons are known to play an important part. It was recently suggested that ICD can be triggered efficiently and site-selectively by resonantly core-exciting a target atom, which then transforms through Auger decay into an ionic species with sufficiently high excitation energy to permit ICD to occur. Here we show experimentally that resonant Auger decay can indeed trigger ICD in dimers of both molecular nitrogen and carbon monoxide. By using ion and electron momentum spectroscopy to measure simultaneously the charged species created in the resonant-Auger-driven ICD cascade, we find that ICD occurs in less time than the 20 femtoseconds it would take for individual molecules to undergo dissociation. Our experimental confirmation of this process and its efficiency may trigger renewed efforts to develop resonant X-ray excitation schemes for more localized and targeted cancer radiation therapy.
The multiphoton multichannel photodynamics of NO 2 has been studied using femtosecond time-resolved coincidence imaging. A novel photoelectron-photoion coincidence imaging machine was developed at the laboratory in Amsterdam employing velocity map imaging and "slow" charged particle extraction using additional electron and ion optics. The NO 2 photodynamics was studied using a two color pump-probe scheme with femtosecond pulses at 400 and 266 nm. The multiphoton excitation produces both NO 2 + parent ions and NO + fragment ions. Here we mainly present the time dependent photoelectron images in coincidence with NO 2 + or NO + and the ͑NO + , e͒ photoelectron versus fragment ion kinetic energy correlations. The coincidence photoelectron spectra and the correlated energy distributions make it possible to assign the different dissociation pathways involved. Nonadiabatic dynamics between the ground state and the A 2 B 2 state after absorption of a 400 nm photon is reflected in the transient photoelectron spectrum of the NO 2 + parent ion. Furthermore, Rydberg states are believed to be used as "stepping" states responsible for the rather narrow and well-separated photoelectron spectra in the NO 2 + parent ion. Slow statistical and fast direct fragmentation of NO 2 + after prompt photoelectron ejection is observed leading to formation of NO + + O. Fragmentation from both the ground state and the electronically excited a 3 B 2 and b 3 A 2 states of NO 2 + is observed. At short pump probe delay times, the dominant multiphoton pathway for NO + formation is a 3 ϫ 400 nm+ 1 ϫ 266 nm excitation. At long delay times ͑Ͼ500 fs͒ two multiphoton pathways are observed. The dominant pathway is a 1 ϫ 400 nm+ 2 ϫ 266 nm photon excitation giving rise to very slow electrons and ions. A second pathway is a 3 ϫ 400 nm photon absorption to NO 2 Rydberg states followed by dissociation toward neutral electronically and vibrationally excited NO͑A 2 ⌺ , v =1͒ fragments, ionized by one 266 nm photon absorption. As is shown in the present study, even though the pump-probe transients are rather featureless the photoelectron-photoion coincidence images show a complex time varying dynamics in NO 2 . We present the potential of our novel coincidence imaging machine to unravel in unprecedented detail the various competing pathways in femtosecond time-resolved multichannel multiphoton dynamics of molecules.
We Coulomb explode argon and neon dimers, trimers, and tetramers by multiple ionization in an ultrashort 800 nm laser pulse. By measuring all momentum vectors of the singly charged ions in coincidence, we determine the ground state nuclear wave function of the dimer, trimer, and tetramer. Furthermore we retrieve the bond angles of the trimer in position space by applying a classical numerical simulation. For the argon and neon trimer, we find a structure close to the equilateral triangle. The width of the distribution around the equilateral triangle is considerably wider for neon than for argon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.