Conceptus energy and nitrogen demands in late pregnancy are mostly met by placental uptake of maternal glucose and amino acids. The resulting 30 to 50% increase in maternal requirements for these nutrients is met partly by increased voluntary intake and partly by an array of maternal metabolic adaptations. The latter include increased hepatic gluconeogenesis from endogenous substrates, decreased peripheral tissue glucose utilization, increased fatty acid mobilization from adipose tissue, and, possibly, increased amino acid mobilization from muscle. Within 4 d of parturition, mammary demands for glucose, amino acids, and fatty acids are several-fold those of the pregnant uterus before term. Even unusual postparturient increases in voluntary intake cannot satisfy this increased nutrient demand. Therefore, rates of hepatic gluconeogenesis and adipose fat mobilization are greatly accelerated. Concomitant changes in amino acid metabolism include increased hepatic protein synthesis and, possibly, decreased amino acid catabolism, and increased peripheral mobilization of amino acids. Insulin resistance in adipose tissue and muscle, developed during late pregnancy, continues postpartum; adipose lipolytic responsiveness and sensitivity to adrenergic agents are increased postpartum beyond their levels during late pregnancy. Before parturition, these homeorhetic adjustments may be coordinated with lactogenesis by increased secretion of estradiol and prolactin. Their amplification and reinforcement at and soon after parturition may be regulated mostly by somatotropin.
Empirical evidence suggests that prolonged underfeeding of protein to late-pregnant dry cows can have modest negative carry-over effects on milk volume and/or protein yield during early lactation, and may also cause increased incidence of metabolic diseases associated with fatty liver. However, assessment of requirements is hampered by lack of information on relationships between dietary intake of crude protein (N × 6·25) and metabolizable protein supply during late pregnancy, and by incomplete understanding of the quantitative metabolism of amino acids in maternal and conceptus tissues. Inability of the postparturient cow to consume sufficient protein to meet mammary and extra-mammary amino acid requirements, including a significant demand for hepatic gluconeogenesis, necessitates a substantial, albeit transient, mobilization of tissue protein during the first 2 weeks of lactation. Ultimately, much of this mobilized protein appears to be derived from peripheral tissues, especially skeletal muscle and, to a lesser extent, skin, through suppression of tissue protein synthesis, and possibly increased proteolysis. In the shorter term, soon after calving, it is likely that amino acids required for hepatic glucose synthesis are diverted from high rates of synthesis of splanchnic tissue and export proteins, including serum albumin. The prevailing endocrine milieu of the periparturient cow, including major reductions in plasma levels of insulin and insulin-like growth factor-I, together with insulin resistance in peripheral tissues, must permissively facilitate, if not actively promote, net mobilization of amino acids from these tissues.
Increased glucose requirements of the gravid uterus during late pregnancy and even greater requirements of the lactating mammary glands necessitate major adjustments in glucose production and utilization in maternal liver, adipose tissue, skeletal muscle, and other tissues. In ruminants, which at all times rely principally on hepatic gluconeogenesis for their glucose supply, hepatic glucose synthesis during late pregnancy and early lactation is increased to accommodate uterine or mammary demands even when the supply of dietary substrate is inadequate. At the same time, glucose utilization by adipose tissue and muscle is reduced. In pregnant animals, these responses are exaggerated by moderate undernutrition and are mediated by reduced tissue sensitivity and responsiveness to insulin, associated with decreased tissue expression of the insulin-responsive facilitative glucose transporter, GLUT4. Peripheral tissue responses to insulin remain severely attenuated during early lactation but recover as the animal progresses through mid lactation. Specific homeorhetic effectors of decreased insulin-mediated glucose metabolism during late pregnancy have yet to be conclusively identified. In contrast, somatotropin is almost certainly a predominant homeorhetic influence during lactation because its exogenous administration causes specific changes in glucose metabolism (and many other functions) of various nonmammary tissues which faithfully mimic normal adaptations to early lactation.
This study investigated effects of birth weight and postnatal nutrition on growth and development of skeletal muscles in neonatal lambs. Low (L; mean +/- SD 2.289 +/- .341 kg, n = 28) and high (H; 4.840 +/- .446 kg, n = 20) birth weight male Suffolk x (Finnsheep x Dorset) lambs were individually reared on a liquid diet to grow rapidly (ad libitum fed, ADG 337 g, n = 20) or slowly (ADG 150 g, n = 20) from birth to live weights (LW) up to approximately 20 kg. At birth, weight of semitendinosus (ST) muscle in L lambs was 43% that in H lambs; aggregate weights of ST and seven other dissected muscles were similarly reduced. In ST muscle of L lambs, mass of DNA, RNA, and protein were also significantly reduced to levels 67, 60, and 34%, respectively, of those in H lambs. However, myofiber numbers of ST, tibialis caudalis, or soleus muscles did not differ between the L and H birth weight lambs and did not change during postnatal growth. During postnatal rearing, daily accretion rate of dissected muscle was lower in L than in H lambs. Accretion of muscle per kilogram of gain in empty body weight (EBW) was reduced in the slowly grown L lambs compared with their H counterparts, although the difference was less pronounced between the rapidly grown L and H lambs. Throughout the postnatal growth period, ST muscle of L lambs contained less DNA with a higher protein:DNA ratio at any given muscle weight than that of H lambs. Slowly grown lambs had heavier muscles at any given EBW than rapidly grown lambs. Content of DNA and protein:DNA ratio in ST muscle were unaffected by postnatal nutrition, but RNA content and RNA:DNA were greater and protein:RNA was lower at any given muscle weight in rapidly grown lambs. Results suggest that myofiber number in fetal sheep muscles is established before the presumed, negative effects of inadequate fetal nutrient supply on skeletal muscle growth and development become apparent. However, proliferation of myonuclei may be influenced by fetal nutrition in late pregnancy. Reduced myonuclei number in severely growth-retarded newborn lambs may limit the capacity for postnatal growth of skeletal muscles.
We investigated the effects of birth weight and postnatal nutrition on growth characteristics of neonatal lambs. Low- and high-birth-weight male lambs were individually reared on a high-quality liquid diet to grow rapidly (ad libitum access to feed) or slowly (ADG 150 g) to various weights up to 20 kg live weight (LW). Average daily gain tended to be greater in the high- (mean+/-SE 345+/-14 g) than in the low- (329+/-15 g) birth-weight lambs given ad libitum access to feed owing to slower growth by the small newborns during the immediate postpartum period. At birth, on a weight-specific basis, small newborns contained 6.4% less nitrogen and tended to have more ash (8.9%) than the high-birth-weight newborns. Daily rates of fat, ash, and GE accretion were greater, and nitrogen accretion tended to be greater in the rapidly grown large newborns than in their small counterparts. At any given empty body weight (EBW) during rearing, low-birth-weight lambs contained more fat and less ash, resulting in slowly and rapidly grown small newborns containing 39.3 and 42.7 Mcal GE, respectively, at completion of the study (17.5 kg EBW), compared with 34.8 and 40.5 Mcal in their large counterparts. The differences in fatness and energy content between the birth weight categories are attributed to energy requirements for maintenance that were approximately 30% lower, coupled with higher relative intakes in the low-birthweight lambs, during the early postnatal period. At this time, the ability to consume nutrients in excess of lean tissue growth requirements was apparently more pronounced in small than in large newborns, which resulted in lower efficiency of energy utilization for tissue deposition. Furthermore, body composition differences between the slowly and rapidly reared lambs support the notion of a priority of lean tissue over fat when nutrient supply is limited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.