The crystal structure at 4.8 angstrom resolution of the reaction center-light harvesting 1 (RC-LH1) core complex from Rhodopseudomonas palustris shows the reaction center surrounded by an oval LH1 complex that consists of 15 pairs of transmembrane helical alpha- and beta-apoproteins and their coordinated bacteriochlorophylls. Complete closure of the RC by the LH1 is prevented by a single transmembrane helix, out of register with the array of inner LH1 alpha-apoproteins. This break, located next to the binding site in the reaction center for the secondary electron acceptor ubiquinone (UQB), may provide a portal through which UQB can transfer electrons to cytochrome b/c1.
The structure of the type II DHQase from Streptomyces coelicolor has been solved and refined to high resolution in complexes with a number of ligands, including dehydroshikimate and a rationally designed transition state analogue, 2,3-anhydro-quinic acid. These structures define the active site of the enzyme and the role of key amino acid residues and provide snap shots of the catalytic cycle. The resolution of the flexible lid domain (residues 21-31) shows that the invariant residues Arg23 and Tyr28 close over the active site cleft. The tyrosine acts as the base in the initial proton abstraction, and evidence is provided that the reaction proceeds via an enol intermediate. The active site of the structure of DHQase in complex with the transition state analog also includes molecules of tartrate and glycerol, which provide a basis for further inhibitor design.
A crystal structure is reported for the C168S mutant of a typical 2-Cys peroxiredoxin III (Prx III) from bovine mitochondria at a resolution of 3.3 A. Prx III is present as a two-ring catenane comprising two interlocking dodecameric toroids that are assembled from basic dimeric units. Each ring has an external diameter of 150 A and encompasses a central cavity that is 70 A in width. The concatenated dodecamers are inclined at an angle of 55 degrees, which provides a large contact surface between the rings. Dimer-dimer contacts involved in toroid formation are hydrophobic in nature, whereas the 12 areas of contact between interlocked rings arise from polar interactions. These two major modes of subunit interaction provide important insights into possible mechanisms of catenane formation.
Lectin-like bacteriocins consist of tandem monocot mannose-binding domains and display a genus-specific killing activity. Here we show that pyocin L1, a novel member of this family from Pseudomonas aeruginosa, targets susceptible strains of this species through recognition of the common polysaccharide antigen (CPA) of P. aeruginosa lipopolysaccharide that is predominantly a homopolymer of d-rhamnose. Structural and biophysical analyses show that recognition of CPA occurs through the C-terminal carbohydrate-binding domain of pyocin L1 and that this interaction is a prerequisite for bactericidal activity. Further to this, we show that the previously described lectin-like bacteriocin putidacin L1 shows a similar carbohydrate-binding specificity, indicating that oligosaccharides containing d-rhamnose and not d-mannose, as was previously thought, are the physiologically relevant ligands for this group of bacteriocins. The widespread inclusion of d-rhamnose in the lipopolysaccharide of members of the genus Pseudomonas explains the unusual genus-specific activity of the lectin-like bacteriocins.
Background: Peroxiredoxin IV metabolizes endoplasmic reticulum-derived hydrogen peroxide.Results: Peroxiredoxin IV structures reveal an unusually stable decamer and a sulfenylated intermediate in the enzymatic cycle.Conclusion: The enzymatic cycle of peroxiredoxin IV involves destabilization of the active site followed by formation of a stable disulfide-bonded decamer.Significance: Elucidating peroxiredoxin structures is required to understand how they function during oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.