These results indicate that anti-inflammatory treatment of early stage laminitis (and the horse at risk of laminitis) should include not only therapeutic drugs that address prostanoid activity, but should also address the marked increases in lamellar cytokine expression.
Twelve dairy heifers were used to examine the clinical response of an alimentary oligofructose overload. Six animals were divided into 3 subgroups, and each was given a bolus dose of 13, 17, or 21 g/kg of oligofructose orally. The control group (n = 6) was sham-treated with tap water. Signs of lameness, cardiovascular function, and gastrointestinal function were monitored every 6 h during development of rumen acidosis. The heifers were euthanized 48 and 72 h after administration of oligofructose. All animals given oligofructose developed depression, anorexia, and diarrhea 9 to 39 h after receiving oligofructose. By 33 to 45 h after treatment, the feces returned to normal consistency and the heifers began eating again. Animals given oligofructose developed transient fever, severe metabolic acidosis, and moderate dehydration, which were alleviated by supportive therapy. Four of 6 animals given oligofructose displayed clinical signs of laminitis starting 39 to 45 h after receiving oligofructose and lasting until euthanasia. The lameness was obvious, but could easily be overlooked by the untrained eye, because the heifers continued to stand and walk, and did not interrupt their eating behavior. No positive pain reactions or lameness were seen in control animals. Based on these results, we conclude that an alimentary oligofructose overload is able to induce signs of acute laminitis in cattle. This model offers a new method, which can be used in further investigation of the pathogenesis and pathophysiology of bovine laminitis.
In the horse, carbohydrate overload is thought to play an integral role in the onset of laminitis by drastically altering the profile of bacterial populations in the hindgut. The objectives of this study were to develop and validate microbial ecology methods to monitor changes in bacterial populations throughout the course of experimentally induced laminitis and to identify the predominant oligofructose-utilizing organisms. Laminitis was induced in five horses by administration of oligofructose. Faecal specimens were collected at 8 h intervals from 72 h before to 72 h after the administration of oligofructose. Hindgut microbiota able to utilize oligofructose were enumerated throughout the course of the experiment using habitat-simulating medium. Isolates were collected and representatives identified by 16S rRNA gene sequencing. The majority of these isolates collected belonged to the genus Streptococcus, 91% of which were identified as being most closely related to Streptococcus infantarius ssp. coli. Furthermore, S. infantarius ssp. coli was the predominant oligofructose-utilizing organism isolated before the onset of lameness. Fluorescence in situ hybridization probes developed to specifically target the isolated Streptococcus spp. demonstrated marked population increases between 8 and 16 h post oligofructose administration. This was followed by a rapid population decline which corresponded with a sharp decline in faecal pH and subsequently lameness at 24-32 h post oligofructose administration. This research suggests that streptococci within the Streptococcus bovis/equinus complex may be involved in the series of events which precede the onset of laminitis in the horse.
SummaryReasons for performing study: The pathophysiological events inhibited by prophylactic digital hypothermia that result in reduction of the severity of acute laminitis are unknown. Objectives: To determine if digital hypothermia inhibits lamellar inflammatory signalling during development of oligofructose (OF) induced laminitis. Methods: Fourteen Standardbred horses were given 10 g/kg bwt OF by nasogastric tube with one forelimb (CRYO) continuously cooled by immersion in ice and water and one forelimb (NON-RX) at ambient temperature. Lamellae were harvested prior to the onset of lameness (24 h post OF administration, DEV group, n = 7) or at the onset of lameness (OG1 group, n = 7). Lamellar mRNA was purified and cDNA produced for real time-quantitative PCR analysis of mRNA concentrations of cytokines (IL-6, IL-1b, IL-10), chemokines (CXCL1, CXCL6, CXCL8/IL-8, MCP-1, MCP-2), cell adhesion molecules (ICAM-1, E-selectin), COX-2 and 3 housekeeping genes. Data were analysed (NON-RX vs. CRYO, NON-RX vs. archived control [CON, n = 7] lamellar tissue) using nonparametric tests. Results: Compared with CON, the OG1 NON-RX had increased (P<0.05) lamellar mRNA concentrations of all measured mediators except IL-10, IL-1b and MCP-1/2, whereas only CXCL8 was increased (P<0.05) in DEV NON-RX. Within the OG1 group, CRYO limbs (compared with NON-RX) had decreased (P<0.05) mRNA concentrations of the majority of measured inflammatory mediators (no change in MCP-1 and IL-10). Within the DEV group, mRNA concentrations of CXCL-1, ICAM-1, IL-1b, CXCL8 and MCP-2 were decreased (P<0.05) and the anti-inflammatory cytokine IL-10 was increased (compared with NON-RX limbs; P<0.05). Conclusions: Digital hypothermia effectively blocked early lamellar inflammatory events likely to play an important role in lamellar injury including the expression of chemokines, proinflammatory cytokines, COX-2 and endothelial adhesion molecules. Potential relevance: This study demonstrates a potential mechanism by which hypothermia reduces the severity of acute laminitis, and may help identify molecular targets for future laminitis intervention.
Carbohydrate-induced laminitis in horses is characterized by marked changes in the composition of the hindgut microbiota, from a predominantly Gram-negative population to one dominated by Gram-positive bacteria. The objective of this study was to monitor changes in the relative abundance of selected hindgut bacteria that have previously been implicated in the pathophysiology of equine laminitis using fluorescence in situ hybridization (FISH). Caecal cannulae were surgically implanted in five Standardbred horses and laminitis induced by oral administration of a bolus dose of oligofructose. Caecal fluid and faecal specimens were collected over a 48 h period at 2 to 4 h intervals post-oligofructose administration and subjected to FISH using probes specific for nine bacterial groups to determine changes in their relative abundance compared with total bacteria hybridizing to the generic EUBMIX probe. Additionally, hoof biopsies were taken over the course of the experiment at 6 h intervals and evaluated for histopathological changes consistent with laminitis, allowing changes in hindgut microbiota to be correlated with the onset of lesions in the foot. Of the microorganisms specifically targeted, streptococci of the Streptococcus bovis/equinus complex were the only bacteria that consistently proliferated in both caecal fluid and faeces immediately before the onset of histological signs of laminitis. Furthermore, lactobacilli, Enterobacteriaceae, Allisonella histaminiformans, enterococci, Bacteroides fragilis, Mitsuokella jalaludinii and Clostridium difficile did not establish significant populations in the hindgut before the onset of equine laminitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.