Severe ionospheric storms occurred at the end of October 2003. During the evening of 30 October a narrow stream of high electron concentration plasma crossed the polar cap in the antisunward ionospheric convection. A GPS scintillation receiver in the European high arctic, operating at 1.575 GHz, experienced both phase and amplitude scintillation on several satellite‐to‐ground links during this period. Close examination of the GPS signals revealed the scintillation to be co‐located with strong gradients in Total Electron Content (TEC) at the edge of the plasma stream. The gradient‐drift instability is a likely mechanism for the generation of the irregularities causing some of the scintillation at L band frequencies during this storm. The origin of the high TEC is explored and the possible implications of the work for scintillation forecasting are noted. The results indicate that the GPS scintillation over Svalbard can originate from traceable ionospheric plasma structures convecting from the American sector.
[1] Satellite in situ measurements of plasma (electron) density fluctuations provide direct information about the structure and morphology of irregularities that are responsible for scintillation of radio waves on transionospheric links. When supplemented with the ionosphere model and irregularity anisotropy model, they can be applied to model morphology of scintillation provided a suitable propagation model is used. In this paper we present a scintillation climatological model for the Northern Hemisphere high-latitude ionosphere, which makes use of the Dynamics Explorer 2 retarding potential analyzer plasma density data, IRI ionosphere model, and the phase screen propagation model. An important aspect of our work is that we derived from the satellite data not just the turbulence strength parameter C s but also the spectral index p, which influences the scintillation level as well. We discuss the magnetic activity, season, magnetic time, and latitude dependence of these parameters. We were able to reproduce successfully the observed scintillation intensity diurnal and seasonal variations. The model satisfactorily describes the expansion of the scintillation zone under magnetically disturbed conditions and reproduces the dawn-dusk asymmetry in the scintillation intensity. The results demonstrate the usefulness of the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.