The article discusses the results of a study investigating the effect of the number of fine non-metallic inclusions (up to 2 µm in size) on the fatigue strength of structural steel during rotary bending. The study was performed on 21 heats produced in an industrial plant. Fourteen heats were produced in 140 ton electric furnaces, and 7 heats were performed in a 100 ton oxygen converter. All heats were desulfurized. Seven heats from electrical furnaces were refined with argon, and heats from the converter were subjected to vacuum circulation degassing.Steel sections with a diameter of 18 mm were hardened and tempered at a temperature of 200, 300, 400, 500 and 600• C. The experimental variants were compared in view of the applied melting technology and heat treatment options. The results were presented graphically, and the fatigue strength of steel with a varied share of non-metallic inclusions was determined during rotary bending. The results revealed that fatigue strength is determined by the relative volume of fine non-metallic inclusions and tempering temperature.Keywords: steel, structural steel, non-metallic inclusions, fatigue strength, bending fatigue, bending pendulum W pracy przedstawiono wyniki badań wpływu ilości drobnych wtrąceń niemetalicznych, o wielkości do 2 µm, na wytrzymałość zmęczeniową przy zginaniu obrotowym. Badania prowadzono na 21 wytopach wyprodukowanych w warunkach przemysłowych. 14 wytopów wykonano w piecach elektrycznych o pojemności 140 ton i 7 wytopów w konwertorze tlenowym o pojemności 100 ton. Wszystkie wytopy poddawano odsiarczaniu. 7 wytopów pochodzących z pieca elektrycznego poddawano rafinacji argonem, zaś wytopy z konwertora odgazowaniu próżniowemu.Odcinki ze stali o średnicy 18 mm hartowano i odpuszczano w temperaturach: 200, 300, 400, 500 lub 600 • C. Warianty badań zestawiono uwzględniając technologię wytapiania stali opcje obróbki cieplnej. Wyniki przedstawiono w graficznej postaci uwzględniającej zależności wytrzymałości zmęczeniowej przy obrotowym zginaniu z udziałem objętościowym wtrąceń niemetalicznych. Wykazano, że wytrzymałość zmęczeniowa zależy od objętości względnej drobnych wtrąceń niemetalicznych, oraz temperatury odpuszczania.
Non-metallic inclusions may be introduced to liquid steel from the outside, usually with charge material, or they may be produced in the metallurgical process. According to literature, if evenly distributed, non-metallic inclusions may affect the functional properties of steel, mainly its fatigue strength. The aim of this study was to determine the quantity and dimensional structure of non-metallic inclusions in high-grade medium carbon steel melted in an electric furnace and subjected to desulfurization. The experimental material consisted of semi-finished products of high-grade, medium-carbon constructional steel containing manganese, chromium, nickel, molybdenum, and boron. The levels of phosphorus and sulphur impurities did not exceed 0.02%. Billet samples were collected to determine the chemical composition, microstructure, the relative volume of non-metallic inclusions, and the size of impurities. The results were processed and presented in graphic form.
The article discusses the effect of large oxide impurities (a diameter larger than 10 µm in size) on the fatigue resistance of structural steel of high purity during rotary bending. The study was performed on 7 heats produced in an industrial plant. The heats were produced in 140 ton electric furnaces. All heats were desulfurized. The experimental material consisted of semi-finished products of high-grade, carbon structural steel with: manganese, chromium, nickel, molybdenum and boron. Steel sections with a diameter of 18 mm were hardened from austenitizing by 30 minutes in temperature 880 o C and tempered at a temperature of 200, 300, 400, 500 and 600°C for 120 minutes and air-cooled. The experimental variants were compared in view of the heat treatment options. Fatigue tests were performed with the use of a rotary bending machine at a frequency of 6000 cpm. The results were statistical processed and presented in graphic form. This paper discusses the results of the relative volume of large impurities, the fatigue strength for various heat processing options.
Non-metallic inclusions found in steel can affect its performance characteristics. Their impact depends not only on their quality, but also, among others, on their size and distribution in the steel volume. The literature mainly describes the results of tests on hard steels, particularly bearing steels. The amount of non-metallic inclusions found in steel with a medium carbon content melted under industrial conditions is rarely presented in the literature. The tested steel was melted in an electric arc furnace and then desulfurized and argonrefined. Seven typical industrial melts were analyzed, in which ca. 75% secondary raw materials were used. The amount of non-metallic inclusions was determined by optical and extraction methods. The test results are presented using stereometric indices. Inclusions are characterized by measuring ranges. The chemical composition of steel and contents of inclusions in every melts are presented. The results are shown in graphical form. The presented analysis of the tests results on the amount and size of non-metallic inclusions can be used to assess them operational strength and durability of steel melted and refined in the desulfurization and argon refining processes.
Non-metallic inclusions are one of the factors that influence the fatigue strength of steel. Although steel has a relatively small number of non-metallic inclusions, those impurities have a considerable impact on the material's technological and strength parameters, in particular fatigue strength and life. The study was performed on 7 heats produced in an industrial plant. Fourteen heats were produced in 140 ton electric furnaces. The experimental variants were compared in view of the applied melting technology and heat treatment options. The results were presented to account for the correlations between the fatigue strength coefficient during rotary bending, the diameter of and spacing between submicroscopic impurities. Equations for calculating the fatigue strength coefficient at each tempering temperature and a general equation for all tempering temperatures were proposed. Equations for estimating the fatigue strength coefficient based on the relative volume of submicroscopic non-metallic inclusions were also presented. The relationship between the fatigue strength and hardness of high-grade steel vs. the quotient of the diameter of impurities and the spacing between impurities were determined. The analyzed material was one grade of medium-carbon structural steel. The proposed linear regression equations supported the determination of fatigue strength coefficient and bending fatigue strength as a function of hardness taking into account impurities. The proposed equations contributes to the existing knowledge base of practices impact of impurities with various diameters and spacing between non-metalic inclusion on fatigue strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.