a b s t r a c tInhaled aerosol dose models play critical roles in medicine, the regulation of air pollutants and basic research. The models fall into several categories: traditional, computational fluid dynamical (CFD), physiologically based pharmacokinetic (PBPK), empirical, semi-empirical, and "reference". Each type of model has its strengths and weaknesses, so multiple models are commonly used for practical applications. Aerosol dose models combine information on aerosol behavior and the anatomy and physiology of exposed human and laboratory animal subjects. Similar models are used for in-vitro studies. Several notable advances have been made in aerosol dose modeling in the past 80 years. The pioneers include Walter Findeisen, who in 1935 published the first traditional model and established the structure of modern models. His model combined aerosol behavior with simplified respiratory tract structures. Ewald Weibel established morphometric techniques for the lung in 1963 that are still used to develop data for modeling today. Advances in scanning techniques have similarly contributed to the knowledge of respiratory tract structure and its use in aerosol dose modeling. Several scientists and research groups have developed and advanced traditional, CFD, and PBPK models. Current issues under study include understanding individual and species differences; examining localized particle deposition; modeling non-ideal aerosols and nanoparticle behavior; linking the regions of the respiratory tract airways from nasal-oral to alveolar; and developing sophisticated supporting software. Although a complete history of inhaled aerosol dose modeling is far too extensive to cover here, selected highlights are described in this paper.
Regarding short-term usage, the studied e-cigarettes generate smaller changes in lung function but similar nicotinergic impact to tobacco cigarettes. Future research should target the health effects of long-term e-cigarette usage, including the effects of nicotine dosage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.