Facility: ushering in a new age for high energy density science," Phys. This paper summarizes the status of NIF hohlraum energetics experiments. The hohlraum targets and experimental design are described, as well as the results of the initial experiments. The data demonstrate low backscattered energy (< 10%) for hohlraums filled with helium gas. A discussion of our current understanding of NIF hohlraum x-ray drive follows, including an overview of the computational tools, i.e., radiation-hydrodynamics codes, that have been used to design the hohlraums. The performance of the codes is compared to x-ray drive and capsule implosion data from the first NIF experiments. These results bode well for future NIF ignition hohlraum experiments.
X-ray fluxes measured in the first 96 and 192 beam vacuum hohlraum experiments at the National Ignition Facility (NIF) were significantly higher than predicted by computational simulations employing XSN average atom atomic physics and highly flux-limited electron heat conduction. For agreement with experimental data, it was found that the coronal plasma emissivity must be simulated with a detailed configuration accounting model that accounts for x-ray emission involving all of the significant ionization states. It was also found that an electron heat conduction flux limit of f = 0.05 is too restrictive, and that a flux limit of f = 0.15 results in a much better match with the NIF vacuum hohlraum experimental data. The combination of increased plasma emissivity and increased electron heat conduction in this new high flux hohlraum model results in a reduction in coronal plasma energy and, hence, an explanation for the high (∼85%-90%) x-ray conversion efficiencies observed in the 235 < Tr < 345 eV NIF vacuum hohlraum experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.