Point design targets have been specified for the initial ignition campaign on the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 443, 2841 (2004)]. The targets contain D-T fusion fuel in an ablator of either CH with Ge doping, or Be with Cu. These shells are imploded in a U or Au hohlraum with a peak radiation temperature set between 270 and 300 eV. Considerations determining the point design include laser-plasma interactions, hydrodynamic instabilities, laser operations, and target fabrication. Simulations were used to evaluate choices, and to define requirements and specifications. Simulation techniques and their experimental validation are summarized. Simulations were used to estimate the sensitivity of target performance to uncertainties and variations in experimental conditions. A formalism is described that evaluates margin for ignition, summarized in a parameter the Ignition Threshold Factor (ITF). Uncertainty and shot-to-shot variability in ITF are evaluated, and sensitivity of the margin to characteristics of the experiment. The formalism is used to estimate probability of ignition. The ignition experiment will be preceded with an experimental campaign that determines features of the design that cannot be defined with simulations alone. The requirements for this campaign are summarized. Requirements are summarized for the laser and target fabrication.
Presenilins are integral membrane protein involved in the production of amyloid -protein. Mutations of the presenilin-1 and -2 gene are associated with familial Alzheimer's disease and are thought to alter ␥-secretase cleavage of the -amyloid precursor protein, leading to increased production of longer and more amyloidogenic forms of A, the 4-kDa -peptide. Here, we show that radiolabeled ␥-secretase inhibitors bind to mammalian cell membranes, and a benzophenone analog specifically photocross-links three major membrane polypeptides. A positive correlation is observed among these compounds for inhibition of cellular A formation, inhibition of membrane binding and cross-linking. Immunological techniques establish N-and C-terminal fragments of presenilin-1 as specifically cross-linked polypeptides. Furthermore, binding of ␥-secretase inhibitors to embryonic membranes derived from presenilin-1 knockout embryos is reduced in a gene dose-dependent manner. In addition, C-terminal fragments of presenilin-2 are specifically cross-linked. Taken together, these results indicate that potent and selective ␥-secretase inhibitors block A formation by binding to presenilin-1 and -2.-Amyloid precursor protein (APP) 1 is a transmembrane protein that undergoes processing to A by proteolytic activities known as -and ␥-secretases (for review, see Refs. 1-3). The -secretase cleavage occurs in the extracellular domain by a recently identified aspartyl protease variously termed BACE, memapsin, and Asp2 (4 -9), whereas the heterogeneous ␥-secretase cleavage occurs in the transmembrane domain (2, 10). Dominant mutations in either of the two human presenilin (PS-1 and PS-2) genes lead to familial Alzheimer's disease (AD). PS-1 and -2 are polytopic membrane proteins (for review, see Refs. 11-13). Presenilins are proteolytic processed. In vivo, only small amounts of the holoprotein can be detected, primarily in the nuclear envelope, whereas 30-kDa N-terminal and 20-kDa C-terminal fragments of presenilin are observed in all mammalian tissues and cell lines analyzed so far. Coimmunoprecipitation experiments revealed that presenilin fragments are assembled into a high molecular weight complex together with other proteins (for review see 11-13). The proposed mechanism through which the presenilin mutations cause AD is an alteration in the predominant ␥-secretase cleavage site which increases the amount of the longer, more amyloidogenic A 1-42(43) fragments produced (11-13). A null mutation of the mouse PS-1 selectively reduces ␥-secretase activity (14), and site-directed mutagenesis of PS-1 and PS-2 at two conserved aspartyl residues, which resemble the catalytic center of aspartyl proteases, also reduces ␥-secretase activity (15, 16). These observations indicate that PS-1 and PS-2 either stimulate the activity of ␥-secretase by trafficking to appropriate cellular compartments, serve as cofactors of the ␥-secretase, or are ␥-secretase themselves.Here, we report that a series of potent and selective ␥-secretase inhibitors bind to mam...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.