End-stage renal disease (ESRD) of undetermined etiology is highly prevalent and constitutes a significant clinical challenge, particularly in the context of kidney transplantation (KT). Despite the identification of numerous rare hereditary nephropathies over the last few decades, patients with undetermined ESRD are not being systematically investigated for rare genetic causes in clinical practice. To address this, we utilized mutation analysis in patients on the kidney transplant waitlist and scrutinized underlying renal diagnoses of 142 patients in a single center KT-waitlist. This cohort was stratified into 85 cases of determined and 57 cases of undetermined ESRD. The latter patients were analyzed by a renal gene panel for mutations in 209 genes associated with ESRD. The most likely genetic diagnoses in 12% of the tested individuals with undetermined ESRD were established. All of these patients showed mutations in genes encoding components of the glomerular filtration barrier. Taken together, hereditary nephropathies, including autosomal dominant polycystic kidney disease, were identified in 35 of the 142 patients of the waitlist cohort. By significantly increasing the proportion of hereditary diagnoses from 29 to 35 patients, the rate of undetermined ESRD significantly decreased from 57 to 51 patients. This study demonstrates the beneficial use of genetic diagnostics in significantly unraveling undetermined ESRD cases prior to KT. Thus, in the absence of renal histology or the presence of unspecific histological conditions, such as hypertensive nephrosclerosis, focal segmental glomerulosclerosis or thrombotic microangiopathy, genetic analysis may provide a robust and specific renal diagnosis and allow for optimizing pre-and post-KT management.
Background The aim of the study was to investigate the effect of recipient obesity on the short- and long-term outcomes of patients undergoing primary kidney transplantation (KT). Patients and methods A total of 578 patients receiving primary KT in our department between 1993 and 2017 were included in the study. Patients were divided according to their body mass index (BMI) into normal weight (BMI 18.5–24.9 kg/m2; N = 304), overweight (BMI 25–29.9 kg/m2; N = 205) and obese (BMI ≥ 30 kg/m2; N = 69) groups. Their clinicopathological characteristics, outcomes, and survival rates were analyzed retrospectively. Results Obesity was associated with an increased rate of surgical complications such as wound infection (P < 0.001), fascial dehiscence (P = 0.023), and lymphoceles (P = 0.010). Furthermore, the hospital stay duration was significantly longer in the groups with obese patients compared to normal weight and overweight patients (normal weight: 22 days, overweight: 25 days, and obese: 33 days, respectively; P < 0.001). Multivariate analysis showed that recipient obesity (BMI ≥ 30) was an independent prognostic factor for delayed graft function (DGF) (OR 2.400; 95% CI, 1.365–4.219; P = 0.002) and postoperative surgical complications (OR 2.514; 95% CI, 1.230–5.136; P = 0.011). The mean death-censored graft survival was significantly lower in obese patients (normal weight: 16.3 ± 0.6 years, overweight: 16.3 ± 0.8 years, obese 10.8 ± 1.5 years, respectively; P = 0.001). However, when using the Cox proportional hazards model, the association between recipient obesity and death-censored renal graft failure disappeared, after adjustment for important covariates, whereas the principal independent predictors of graft loss were recipient diabetes mellitus and hypertension and kidneys from donors with expanded donor criteria. Conclusion In conclusion, obesity increases the risk of DGF and post-operative surgical complications after primary KT. Appropriate risk-adapted information concerning this must be provided to such patients before KT. Furthermore, obesity-typical concomitant diseases seem to negatively influence graft survival and need to be considered after the transplantation of obese patients.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Modern noninvasive liver graft assessment frequently detects hepatic steatosis, which is associated with graft fibrosis, components of the metabolic syndrome and recipient PNPLA3 rs738409 genotype, especially in ALC patients.
IntroductionAntibody mediated rejection (ABMR) is the most common cause of long-term allograft loss in kidney transplantation (KT). Therefore, a low human leukocyte antigen (HLA) mismatch (MM) load is favorable for KT outcomes. Hitherto, serological or low-resolution molecular HLA typing have been adapted in parallel. Here, we aimed to identify previously missed HLA mismatches and corresponding antibodies by high resolution HLA genotyping in a living-donor KT cohort.Methods103 donor/recipient pairs transplanted at the University of Leipzig Medical Center between 1998 and 2018 were re-typed using next generation sequencing (NGS) of the HLA loci -A, -B, -C, -DRB1, -DRB345, -DQA1, -DQB1, -DPA1, and -DPB1. Based on these data, we compiled HLA MM counts for each pair and comparatively evaluated genomic HLA-typing with pre-transplant obtained serological/low-resolution HLA (=one-field) typing results. NGS HLA typing (=two-field) data was further used for reclassification of de novo HLA antibodies as “donor-specific”.ResultsBy two-field HLA re-typing, we were able to identify additional MM in 64.1% (n=66) of cases for HLA loci -A, -B, -C, -DRB1 and -DQB1 that were not observed by one-field HLA typing. In patients with biopsy proven ABMR, two-field calculated MM count was significantly higher than by one-field HLA typing. For additional typed HLA loci -DRB345, -DQA1, -DPA1, and -DPB1 we observed 2, 26, 3, and 23 MM, respectively. In total, 37.3% (69/185) of de novo donor specific antibodies (DSA) formation was directed against these loci (DRB345 ➔ n=33, DQA1 ➔ n=33, DPA1 ➔ n=1, DPB1 ➔ n=10).ConclusionOur results indicate that two-field HLA typing is feasible and provides significantly more sensitive HLA MM recognition in living-donor KT. Furthermore, accurate HLA typing plays an important role in graft management as it can improve discrimination between donor and non-donor HLA directed cellular and humoral alloreactivity in the long range. The inclusion of additional HLA loci against which antibodies can be readily detected, HLA-DRB345, -DQA1, -DQB1, -DPA1, and -DPB1, will allow a more precise virtual crossmatch and better prediction of potential DSA. Furthermore, in living KT, two-field HLA typing could contribute to the selection of the immunologically most suitable donors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.