The main serious risks of anastomotic construction in the colon and rectum include dehiscence and stricture formation. There is a resurgence of interest in sutureless anastomoses formed by compression elements since the introduction of shape memory alloy (SMA) systems, which evoke minimal early inflammatory response whilst maintaining anastomotic integrity. Currently, the most commonly used SMA is the nickel-titanium (NiTi) alloy that is highly biocompatible, returning to its pre-deformed stable (austenite) shape under different mechanical and thermal loads for use in humans. Pre-clinical data for shape memory alloy systems in colorectal anastomoses are limited, but it appears to be safe in porcine and canine models with limited leakage and reduced stricture formation. There does not appear to be any difference in tissue biochemistry of inflammatory markers when compared with conventional stapled techniques, although the few studies available show a markedly reduced early inflammatory response at the anastomotic site with the NiTi device. The majority of the clinical data concerning compression anastomoses are derived from the biofragmentable anastomotic ring device. This device has fallen out of use because of reported leaks, instrumental failure and problems with device expulsion. A novel SMA device, the NiTi anastomotic ring, permits construction of a low rectal anastomosis construction during open or laparoscopic procedures. The preliminary data demonstrate a safety comparable to conventional staple technology. This device also provides the potential of benefit of reduced anastomotic inflammation, because the compression ring results in direct serosa-to-serosa (or alternatively serosa-to-muscularis propria) apposition without the persistence of residual foreign material. This type of construction could lead to a reduced incidence of early anastomotic leakage and/or the development of anastomotic stenosis. Randomized clinical trials employing a NiTi arm for elective, emergency and high-risk colorectal anastomoses are required to determine its indications and clinical profile as well as to assess whether such technology may selectively obviate the need for proximal diversion in low colorectal anastomoses.
Aim:The Enhanced Recovery After Surgery (ERAS®) Society guidelines aim to standardize perioperative care in colorectal surgery via 25 principles. We aimed to assess the variation in uptake of these principles across an international network of colorectal units.Method: An online survey was circulated amongst European Society of Coloproctology members in 2019-2020. For each ERAS principle, respondents were asked to score how frequently the principle was implemented in their hospital, from 1 ('rarely') to 4 ('always'). Respondents were also asked to recall whether practice had changed since 2017.Subgroup analyses based on hospital characteristics were conducted.Results: Of hospitals approached, 58% responded to the survey (195/335), with 296 individual responses (multiple responses were received from some hospitals). The majority were European (163/195, 83.6%). Overall, respondents indicated they 'most often' or 'always' adhered to most individual ERAS principles (18/25, 72%). Variability in the uptake of principles was reported, with universal uptake of some principles (e.g., prophylactic antibiotics; early mobilization) and inconsistency from 'rarely' to 'always' in others (e.g., no nasogastric intubation; no preoperative fasting and carbohydrate drinks). In alignment with 2018 ERAS guideline updates, adherence to principles for prehabilitation, managing anaemia and postoperative nutrition appears to have increased since 2017.Conclusions: Uptake of ERAS principles varied across hospitals, and not all 25 principles were equally adhered to. Whilst some principles exhibited a high level of acceptance, others had a wide variability in uptake indicative of controversy or barriers to uptake. Further research into specific principles is required to improve ERAS implementation.
Reconstruction of the digestive system lumen patency (anastomosis creation) after its partial surgical removal is a common and crucial procedure. The conventional anastomosis methods use devices for mechanical suturing which are associated with high failure risk and can lead to major complications. The compression anastomosis as a sutureless method seems to be a promising alternative. However, attempts during the last two centuries have not been completely successful due to the complex character of the tissuehealing process. The specific mechanical behavior of Nitinol alloys was applied to the force element of the compression devices. These devices are becoming more widely adopted in surgery practice. The compression anastomosis device enables the anastomosis of colonic and intestinal tissue based on compression forces exerted by Nitinol leaf springs. By means of changing the strain distribution in the stressed leaves with varying moments of inertia, one can gain full control of the different stages in the force-deflection profile (i.e., linear elastic stage and the force plateau stage). The target of this study is the comparison of different Nitinol leaf geometries and evaluation of the finite elements analysis as a tool for preliminary design of such geometries. The results of this analysis allow us to establish regulation of the springÕs mechanical behavior, thus controlling the anastomosis creation in the compression anastomosis device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.