We present an upper mantle P-wave velocity model for the Ross Sea Embayment (RSE) region of West Antarctica, constructed by inverting relative P-wave travel-times from 1881 teleseismic earthquakes recorded by two temporary broadband seismograph deployments on the Ross Ice Shelf, as well as by regional ice-and rock-sited seismic stations surrounding the RSE. Faster upper mantle P-wave velocities (∼ +1%) characterize the eastern part of the RSE, indicating that the lithosphere in this part of the RSE may not have been reheated by mid-to-late Cenozoic rifting that affected other parts of the Late Cretaceous West Antarctic Rift System. Slower upper mantle velocities (∼ −1%) characterize the western part of the RSE over a ∼500 km-wide region, extending from the central RSE to the Transantarctic Mountains (TAM). Within this region, the model shows two areas of even slower velocities (∼ −1.5%) centered beneath Mt. Erebus and Mt. Melbourne along the TAM front. We attribute the broader region of slow velocities mainly to reheating of the lithospheric mantle by Paleogene rifting, while the slower velocities beneath the areas of recent volcanism may reflect a Neogene-present phase of rifting and/or plume activity associated with the formation of the Terror Rift. Beneath the Ford Ranges and King Edward VII Peninsula in western Marie Byrd Land, the P-wave model shows lateral variability in upper mantle velocities of ±0.5% over distances of a few hundred km. The heterogeneity in upper mantle velocities imaged beneath the RSE and western Marie Byrd Land, assuming no significant variation in mantle composition, indicates variations in upper mantle temperatures of at least 100 • C. These temperature variations could lead to differences in surface heat flow of ∼ ±10 mW/m 2 and mantle viscosity of 10 2 Pa s regionally across the study area, possibly influencing the stability of the West Antarctic Ice Sheet by affecting basal ice conditions and glacial isostatic adjustment.
We present a 3D shear‐wave velocity model of the southern African upper mantle developed using 30–200 s period Rayleigh waves recorded on regional seismic networks spanning the subcontinent. The model shows high velocities (∼4.7–4.8 km/s) at depths of 50–250 km beneath the Archean nucleus and several surrounding Paleoproterozoic and Mesoproterozoic terranes, placing the margin of the greater Kalahari Craton along the southern boundary of the Damara Belt and the eastern boundaries of the Gariep and Namaqua‐Natal belts. At depths ≥250 km, there is little difference in velocities beneath the craton and off‐craton regions, suggesting that the cratonic lithosphere extends to depths of about 200–250 km. Upper mantle velocities beneath uplifted areas of southern Africa are higher than the global average and significantly higher than beneath eastern Africa, indicating there that is little thermal modification of the upper mantle present today beneath the Southern African Plateau.
We report new P and S wave velocity models of the upper mantle beneath southern Africa using data recorded on seismic stations spanning the entire subcontinent. Beneath most of the Damara Belt, including the Okavango Rift, our models show lower than average velocities (−0.8% Vp; −1.2% Vs) with an abrupt increase in velocities along the terrane's southern margin. We attribute the lower than average velocities to thinner lithosphere (~130 km thick) compared to thicker lithosphere (~200 km thick) immediately to the south under the Kalahari Craton. Beneath the Etendeka Flood Basalt Province, higher than average velocities (0.25% Vp; 0.75% Vs) indicate thicker and/or compositionally distinct lithosphere compared to other parts of the Damara Belt. In the Rehoboth Province, higher than average velocities (0.3% Vp; 0.5% Vs) suggest the presence of a microcraton, as do higher than average velocities (1.0% Vp; 1.5% Vs) under the Southern Irumide Belt. Lower than average velocities (−0.4% Vp; −0.7% Vs) beneath the Bushveld Complex and parts of the Mgondi and Okwa terranes are consistent with previous studies, which attributed them to compositionally modified lithosphere resulting from Precambrian magmatic events. There is little evidence for thermally modified upper mantle beneath any of these terranes which could provide a source of uplift for the Southern African Plateau. In contrast, beneath parts of the Irumide Belt in southern and central Zambia and the Mozambique Belt in central Mozambique, deep-seated low velocity anomalies (−0.7% Vp; −0.8% Vs) can be attributed to upper mantle extensions of the African superplume structure. In the interpretation of our models, we not only reexamine the Precambrian tectonic framework of southern Africa, but also investigate if there is evidence for thermally perturbed upper mantle beneath southern Africa, particularly beneath the uplifted regions of the Southern African Plateau. There has been much discussion (e.g.,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.