ForewordThe Pierre Auger Observatory has begun a major Upgrade of its already impressive capabilities, with an emphasis on improved mass composition determination using the surface detectors of the Observatory. Known as AugerPrime, the upgrade will include new 4 m 2 plastic scintillator detectors on top of all 1660 water-Cherenkov detectors, updated and more flexible surface detector electronics, a large array of buried muon detectors, and an extended duty cycle for operations of the fluorescence detectors.This Preliminary Design Report was produced by the Collaboration in April 2015 as an internal document and information for funding agencies. It outlines the scientific and technical case for AugerPrime 1 . We now release it to the public via the arXiv server. We invite you to review the large number of fundamental results already achieved by the Observatory and our plans for the future.The Pierre Auger Collaboration 1 As a result of continuing R&D, slight changes have been implemented in the baseline design since this Report was written. These changes will be documented in a forthcoming Technical Design Report. ix x Executive Summary Present Results from the Pierre Auger ObservatoryMeasurements of the Auger Observatory have dramatically advanced our understanding of ultra-high energy cosmic rays. The suppression of the flux around 5×10 19 eV is now confirmed without any doubt. Strong limits have been placed on the photon and neutrino components of the flux indicating that "top-down" source processes, such as the decay of superheavy particles, cannot account for a significant part of the observed particle flux. A largescale dipole anisotropy of ∼7% amplitude has been found for energies above 8×10 18 eV. In addition there is also an indication of the presence of a large scale anisotropy below the ankle. Particularly exciting is the observed behavior of the depth of shower maximum with energy, which changes in an unexpected, non-trivial way. Around 3×10 18 eV it shows a distinct change of slope with energy, and the shower-to-shower variance decreases. Interpreted with the leading LHC-tuned shower models, this implies a gradual shift to a heavier composition. A number of fundamentally different astrophysical model scenarios have been developed to describe this evolution. The high degree of isotropy observed in numerous tests of the small-scale angular distribution of UHECR above 4×10 19 eV is remarkable, challenging original expectations that assumed only a few cosmic ray sources with a light composition at the highest energies. Interestingly, the largest departures from isotropy are observed for cosmic rays with E > 5.8×10 19 eV in ∼20 • sky-windows. Due to a duty cycle of ∼15% of the fluorescence telescopes, the data on the depth of shower maximum extend only up to the flux suppression region, i.e. 4×10 19 eV. Obtaining more information on the composition of cosmic rays at higher energies will provide crucial means to discriminate between the model classes and to understand the origin of the observed flux suppre...
he Pierre Auger Observatory, located on a vast, high plain in western\ud Argentina, is the world's largest cosmic ray observatory. The objectives\ud of the Observatory are to probe the origin and characteristics of cosmic\ud rays above 10(17) eV and to study the interactions of these, the most\ud energetic particles observed in nature. The Auger design features an\ud array of 1660 water Cherenkov particle detector stations spread over\ud 3000 km(2) overlooked by 24 air fluorescence telescopes. In addition,\ud three high elevation fluorescence telescopes overlook a 23.5 km(2),\ud 61-detector infilled array with 750 in spacing. The Observatory has been\ud in successful operation since completion in 2008 and has recorded data\ud from an exposure exceeding 40,000 km(2) sr yr. This paper describes the\ud design and performance of the detectors, related subsystems and\ud infrastructure that make up the Observatory
We report a study of the distributions of the depth of maximum, Xmax, of extensive air-shower profiles with energies above 10 17.8 eV as observed with the fluorescence telescopes of the Pierre Auger Observatory. The analysis method for selecting a data sample with minimal sampling bias is described in detail as well as the experimental cross-checks and systematic uncertainties. Furthermore, we discuss the detector acceptance and the resolution of the Xmax measurement and provide parameterizations thereof as a function of energy. The energy dependence of the mean and standard 4 deviation of the Xmax-distributions are compared to air-shower simulations for different nuclear primaries and interpreted in terms of the mean and variance of the logarithmic mass distribution at the top of the atmosphere.
A. AAB et al. we have examined the implications of the distributions of depths of atmospheric shower maximum (X max ), using a hybrid technique, for composition and hadronic interaction models. We do this by fitting the distributions with predictions from a variety of hadronic interaction models for variations in the composition of the primary cosmic rays and examining the quality of the fit. Regardless of what interaction model is assumed, we find that our data are not well described by a mix of protons and iron nuclei over most of the energy range. Acceptable fits can be obtained when intermediate masses are included, and when this is done consistent results for the proton and iron-nuclei contributions can be found using the available models. We observe a strong energy dependence of the resulting proton fractions, and find no support from any of the models for a significant contribution from iron nuclei. However, we also observe a significant disagreement between the models with respect to the relative contributions of the intermediate components.
We present an effective linear response approach to pump-probe femtosecond coherence spectroscopy in the well separated pulse limit. The treatment presented here is based on a displaced and squeezed state representation for the non-stationary states induced by an ultrashort pump laser pulse or a chemical reaction. The subsequent response of the system to a delayed probe pulse is modeled using closed form non-stationary linear response functions, valid for a multimode vibronically coupled system at arbitrary temperature. When pump-probe signals are simulated using the linear response functions, with the mean nuclear positions and momenta obtained from a rigorous moment analysis of the pump induced (doorway) state, the signals are found to be in excellent agreement with the conventional third order response approach. The key advantages offered by the moment analysis based linear response approach include a clear physical interpretation of the amplitude and phase of oscillatory pump-probe signals, a dramatic improvement in computation times, a direct connection between pump-probe signals and equilibrium absorption and dispersion lineshapes, and the ability to incorporate coherence such as those created by rapid non-radiative surface crossing. We demonstrate these aspects using numerical simulations, and also apply the present approach to the interpretation of experimental amplitude and phase measurements on reactive and non-reactive samples of the heme protein Myoglobin. The role played by inhomogeneous broadening in the observed amplitude and phase profiles is discussed in detail. We also investigate overtone signals in the context of reaction driven coherent motion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.