We describe slow light propagation of a 10 Gbit/s data stream in a narrow band fiber parametric amplifier. A large tunable delay of 10 to 60 ps with very low signal distortion has been demonstrated in a 1 km long dispersion shifted fiber. The longitudinal variation of the fiber propagation parameters was extracted from measured amplified spontaneous emission and these parameters serve to accurately predict the delayed temporal pulse shape. Simulated results suggest that the system exhibits large delays with low distortions in a wide spectral range within the OPA gain spectrum.
We investigate four-wave mixing (FWM) in GaInP 1.5 mm long dispersion engineered photonic crystal waveguides. We demonstrate an 11 nm FWM bandwidth in the CW mode and a conversion efficiency of -24 dB in the quasi-CW mode. For picosecond pump and probe pulses, we report a 3 dB parametric gain and nearly a -5 dB conversion efficiency at watt-level peak pump powers.
We describe a widely tunable synchronously pumped coherent source based on the process of narrowband parametric amplification in a dispersion-shifted fiber. Using an experimental fiber with a zero-dispersion wavelength of 1590 nm and pump wavelengths of 1530 to 1570 nm yields oscillations at 1970 to 2140 nm-the longest reported wavelength for a fiber parametric oscillator. The long-wavelength oscillations are accompanied by simultaneous short-wavelength oscillations at 1200 to 1290 nm. The parametric gain is coupled to stimulated Raman scattering. For parametric oscillations close to the Raman gain peak, the two gain processes must be discriminated from each other. We devised two configurations that achieve this discrimination: one is based on the exploitation of the difference in group delay between the wavelengths where Raman and parametric gain peak, and the other uses intracavity polarization tuning.
We report on high quality InAs/InP quantum dot optical amplifiers for the 1550 nm wavelength range operating over a wide temperature range of 25 to 100 °C. A temperature dependent shift of the peak gain wavelength at a rate of 0.78 nm/K is observed. Consequently, two possible modes of operation are performed for a systematic device characterization over the entire temperature range. In the first mode, the signal wavelength is tuned to always match the peak gain wavelength while in the second mode, the signal wavelength is kept constant as the gain spectrum shifts with the temperature. Static characteristics, such as gain spectra and saturation levels, as well as dynamical properties, are presented. Distortion-less amplification of a single 28 Gbit/s signal and cross-talk free amplification of two channels, detuned by 2 nm, were demonstrated over the entire temperature range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.