Polarographic microcoaxial needle electrodes were used to measure internal profiles of dissolved oxygen tension (Po(2)) within single Ca-alginate beads of different diameter containing entrapped cells of Saccharomyces cerevisiae. For the investigations, single beads coming from variable growing conditions and distinct cultivation stages were fixed in a special holding device. In dependence on microbial growth steep oxygen gradients were observed. The Oxygen penetration depth at steady state lay between 50 and 100 microm. After 8 h of cultivation time, the anaerobic space within the beads (phi 2 mm; cultivation in a packed bed reactor) is beginning at approximately 130 microm, whereas the anaerobic space within the beads (phi 2 mm) coming from the shaker flask culture is located approximately 440 microm below the bead surface. Surprisingly, steep gradients were also observed, when recording profiles from cell-free Ca-alginate beads of different diameter and alginate concentrations. The steep oxygen gradients apparently had to be interpreted as pseudo-Po(2)-gradients. These results were borne by several effects, such as formation of artifacts and diffusion barriers in front of the electrode tip or oxygen "availability" at the tip and consumption of oxygen by the electrode itself. These phenomena could be documented by microscopic observation and photography. Thus, to obtain real Po(2)-profiles it is important to be exactly informed about the physical, chemical, and biological properties of the material to be investigated. Furthermore, it is necessary to apply a special stepwise puncture technique with distinct step-in/step-out movements of the electrode: e.g., unidirectional or contradirectional puncture techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.