We provide a comprehensive description of the defect tolerance of sodium-borosilicate glasses upon sharp contact loading. This is motivated by the key role which is taken by this particular glass system in a wide variety of applications, ranging from electronic substrates, display covers and substrates for biomedical imaging and sensing to, e.g., radioactive waste vitrification. The present report covers the mechanical properties of glasses in the Na 2 O-B 2 O 3 -SiO 2 ternary over the broad range of compositions from pure SiO 2 to binary sodium-borates, and crossing the regions of various commercially relevant specialty borosilicate glasses, such as the multi-component Duran-, Pyrex-and BK7-type compositions and typical soda-lime silicate glasses, which are also included in this study. In terms of structure, the considered glasses may be separated into two groups, that is, one series which contains only bridging oxygen atoms, and another series which is designed with an increasing number of nonbridging oxygen ions. Elastic moduli, Poisson ratio, hardness as well as creep and crack resistance were evaluated, as well as the contribution of densification to the overall amount of indentation deformation. Correlations between the mechanical properties and structural characteristics of near-and mid-range order are discussed, from which we obtain a mechanistic view at the molecular reactions which govern the overall deformation reaction and, ultimately, contact cracking.
A series of transition and post-transition metal ion (Mn, Cu, Zn, Pb, Bi) binary borate glasses was studied with special consideration of the cations impact on the borate structure, the cations cross-linking capacity, and more generally, structure-property correlations. Infrared (IR) and Raman spectroscopies were used for the structural characterization. These complementary techniques are sensitive to the short-range order as in the differentiation of tetrahedral and trigonal borate units or regarding the number of non-bridging oxygen ions per unit. Moreover, vibrational spectroscopy is also sensitive to the intermediate-range order and to the presence of superstructural units, such as rings and chains, or the combination of rings. In order to clarify band assignments for the various borate entities, examples are given from pure vitreous BO to meta-, pyro-, ortho-, and even overmodified borate glass compositions. For binary metaborate glasses, the impact of the modifier cation on the borate speciation is shown. High field strength cations such as Zn enhance the disproportionation of metaborate to polyborate and pyroborate units. Pb and Bi induce cluster formation, resulting in PbO- and BiO-pseudophases. Both lead and bismuth borate glasses show also a tendency to stabilize very large superstructural units in the form of diborate polyanions. Far-IR spectra reflect on the bonding states of modifier cations in glasses. The frequency of the measured cation-site vibration band was used to obtain the average force constant for the metal-oxygen bonding, F. A linear correlation between glass transition temperature (T) and F was shown for the metaborate glass series. The mechanical properties of the glasses also correlate with the force constant F, though for cations of similar force constant the fraction of tetrahedral borate units (N) strongly affects the thermal and mechanical properties. For paramagnetic Cu- and Mn-borate glasses, N was determined from the IR spectra after deducing the relative absorption coefficient of boron tetrahedral versus boron trigonal units, α = α/α, using NMR literature data of the diamagnetic glasses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.