The current research was conducted to compare growth, carcass traits, pH, intramuscular collagen (IMC) properties, and genetic bases of IMC and carcasses (breast-muscle weight) of different lines and generations of adult males and females of Japanese quail (Coturnix japonica). Forty-four quails (generation F0), 22 Pharaoh (F-33) meat-type males and 22 Standard (S-22) laying-type females, were crossed to produce the F1 hybrids generation. The F2 generation was created by mating one F1 male with one F1 female, full siblings. The birds, randomly chosen from F0 (22 males and 22 females), F1 (22 males and 22 females), and F2 (84 males and 152 females) were raised to 20 wk of age in collective cages. Quails were fed ad libitum commercial diets. At slaughter, all birds were individually weighed (after a fasting period of 12 h) and dressing yield (without giblets) was calculated. The carcasses were then dissected. Genomic DNA was extracted from all of the blood, and 30 microsatellite markers located on 2 quail chromosomes were genotyped. The F -: 33 quails had higher in vivo and postmortem performances and a higher abdominal fat percentage than those of the egg line. Meat from S -: 22 quails had a slower collagen maturation (hydroxylysylpyridinoline crosslink/collagen) and a higher ultimate pH. The F1 and F2 generations showed an evident sexual dimorphism, and an additional effect could be due to hybrid heterosis evident in F2. Meat from quails of F1 and F2 generations had a lower IMC amount with a higher degree of collagen maturation compared with parental lines. Two statistically significant QTL have been detected on quail chromosome 2 (CJA02): a QTL with an additive effect (0.50) for IMC in the marker bracket GUJ0037 and GUJ0093; a second QTL with additive (1.32) and dominant (1.91) effects for breast-muscle weight in the marker bracket GUJ0084 and GUJ0073. To our knowledge, this is the first report of a QTL associated with breast-muscle weight and IMC in quail and poultry species, respectively.
A QTL involved in the primary antibody response toward keyhole limpet hemocyanin (KLH) was detected on chicken chromosome 14 in the experimental population, which was created by crossing commercial White Leghorn and a Polish native chicken breed (green-legged partridgelike). The current QTL location is a validation of previous experiments pointing to the same genomic location for the QTL linked to a primary antibody response to KLH. An experimental population was typed with microsatellite markers distributed over the chicken chromosome 14. Titers of antibodies binding KLH were measured for all individuals by ELISA. Statistical models applied in the Grid QTL Web-based software were used to analyze the data: a half-sib model, a line-cross model, and combined analysis in a linkage disequilibrium and linkage analysis model. Candidate genes that have been proposed were genotyped with SNP located in genes exons. Statistical analyses of single SNP associations were performed pointing out 2 SNP of an axis inhibitor protein (AXIN1) gene as significantly associated with the trait of an interest.
To study growth performance and meat quality traits (cholesterol content and intramuscular collagen properties) of quail, 3 trials were carried out. Trial 1 used males of generation 19 of the egg type Japanese quail (Coturnix japonica) selected previously (until generation 17) for low (n = 8) or high (n = 7) yolk cholesterol content as well as an unselected control (n = 11). Trial 2 used males of meat Pharaoh quail selected earlier (generations 1 to 6 and 9 to 11) on the basis of BW decrease after periodic deprivation of food (high decrease of weight, n = 10; low decrease of weight, n = 8) and unselected control (n = 10). Trial 3 compared males of English White quail, Manchurian Golden quail, and British Range quail. The birds were raised to 35 d of age. Quail were fed ad libitum commercial diets according to age and had free access to water. At slaughter, all birds were individually weighed (after a fasting period of 12 h), stunned, and decapitated. After the refrigeration period (24 h at 4°C), the left pectoralis superficialis muscle was removed from the carcasses, weighed, vacuum packaged, and stored frozen (-40°C) for analyses of cholesterol and intramuscular collagen (IMC; collagen and crosslink concentration). In trial 1, divergent selection for yolk cholesterol content did not significantly influence pectoralis superficialis muscle weight and IMC crosslinking of Japanese quail, whereas it significantly reduced growth and IMC amount. In addition, it had greater effect on the amount of cholesterol in meat; in fact, the meat of quail with low yolk cholesterol content contained lower cholesterol (-36.6%) than that of birds with high yolk cholesterol content. In trial 2, divergent selection on the basis of Pharaoh quail BW decrease altered IMC crosslinking, leading to variability in meat tenderness of Pharaoh quail. In trial 3, English White quail were significantly heavier than the other breeds.
The objective of the current study was to identify QTL associated with body weight, growth rate, egg quality traits, concentration of selected blood plasma, and yolk lipids as well as concentration of selected macro- and microelements, color, pH, basic chemical composition, and drip loss of breast muscle of Japanese quail (Coturnix japonica). Twenty-two meat-type males (line F33) were crossed with twenty-two laying-type females (line S22) to produce a generation of F1 hybrids. The F2 generation was created by mating 44 randomly chosen F1 hybrids, which were full siblings. The birds were individually weighed from the first to eighth week of age. At the age of 19 wk, 2 to 4 eggs were individually collected from each female and an analysis of the egg quality traits was performed. At slaughter, blood and breast muscles were collected from 324 individuals of the resource population. The basic chemical composition, concentration of chosen macro- and microelements, color, pH, and drip loss were determined in the muscle samples. The concentration of chosen lipids was determined in egg yolk and blood plasma. In total, 30 microsatellite markers located on chromosome 1 and 2 were genotyped. QTL mapping including additive and dominance genetic effects revealed 6 loci on chromosome 1 of the Japanese quail affecting the egg number, egg production rate, egg weight, specific gravity, egg shell weight, concentration of Na in breast muscle. In turn, there were 9 loci on chromosome 2 affecting the body weight in the first, fourth, and sixth week of age, growth rate in the second and seventh week of age, specific gravity, concentration of K and Cu in breast muscle, and the levels of triacylglycerols in blood plasma. In this study, QTL with a potential effect on the Na, K, and Cu content in breast muscles in poultry and on specific gravity in the Japanese quail were mapped for the first time.
This work was aimed at comparing distribution of isoforms for polymorphic histone H1 variants H1.b and H1.z and variably abundant histone H1.d subtype between quail (Coturnix japonica) population selected for a high egg yolk cholesterol content and the control birds. The isoforms of histone H1.b (H1.b1, H1.b2) and histone H1.z (H1.z1, H1.z2) differed in their apparent molecular weights judging from their differential migration rates in one-and two-dimensional SDS-polyacrylamide gels. Stained histone H1.d bands and spots in one-dimensional acetic acid-urea and two-dimensional SDS-polyacrylamide gel patterns, respectively, exhibited differential intensities among quail individuals. Histone H1. .f. = 1, P < 0.01) were found to be statistically significant among the control and selected population. In general, a moderate degree of genetic divergence (F ST equal to 0.07 and 0.1 at loci H1.b and H1.z, respectively) was observed among the control and selected quail populations. Selection may directly or indirectly affect the complement of H1 histones because of their presumably differential interactions with DNA and/or DNA-associated proteins resulting in alterations in the chromatin function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.