An increase in the share of renewable sources in the energy mix makes coal-fired power plants operate in new conditions that require more dynamic operation and adequate flexibility. The frequency of the power unit start-ups increases and so does the frequency of changes in loads. This intensifies some life consumption processes, such as low-cycle fatigue and crack propagation in the turbine components. Further operation of power unit elements that have already been in service for a long time has to be supplemented with new diagnostic and repair procedures that take into account the intensification of life consumption processes. This article gives predictions about the propagation rate of potential cracks in the turbine rotor for different scenarios of the power unit’s long-term operation. A method is presented of rational selection of the diagnostic testing time based on risk analysis. The method is used to estimate the optimal interval after which diagnostic testing of a 200 MW turbine rotor should be carried out. Changes in the rotor steel crack toughness are evaluated based on the results of testing of microspecimens cut out of the rotor. Turbines with more frequent start-ups and shorter start-up times necessitate performance of diagnostic testing of the rotor central bore after about 12 years of turbine operation.
The new conditions in which coal-fired power plants, especially 200 MW units, have to operate require a considerable increase in the dynamics of their operation. The power unit start-up frequency increases and so does the frequency of changes in loads. This intensifies some wear processes, such as low- cycle fatigue and crack propagation in particular. Therefore, further operation of power units which have already been in service for a long time has to be supplemented with results of analyses and tests taking account of the intensification of wear processes. The paper presents a proposal for an extension of standard diagnostic testing of turbines by adding small punch tests (SPT) of the rotor material micro specimens. The SPT method enables a fast quasi non-destructive assessment of changes in mechanical properties, especially rotor steel embrittlement due to the turbine previous operation. The other element of the proposed testing is the analysis of the propagation rate of potential cracks in the rotor and assessment of the rotor failure probability for different scenarios of the power unit further operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.