The sub-atmospheric CO 2 microwave plasma is known to contract to a narrow filament with rising pressure as result of a mode transition. This changing state of contraction is investigated in relation to its dielectric properties, in order to directly relate the discharge parameters to the discharge radius. The electron density and gas temperature are measured, respectively, by 168 GHz microwave interferometry and Doppler broadening of the 777 nm oxygen emission lines. The plasma is operated in steady state with 1400 W at 2.45 GHz, between 100 mbar to 400 mbar. Electron density values in the central region range from 10 18 to 10 20 m −3 between the discharge modes, while the gas temperature increases from 3000 K to 6500 K, in good agreement with previously reported values. Based on the dielectric properties of the discharge in relation to the plasma radius, it is found that the discharge column constitutes a radius of a single skin depth. Implications of these insights on the conditions of previously reported CO 2 dissociation experiments are discussed.
Understanding and control over plasma instabilities and contraction phenomena in reactive flows is essential to optimize the discharge parameters for plasma processing applications such as fuel reforming and gas conversion. In this work, we describe the characteristic discharge modes in a CO 2 microwave plasma and assess the impact of wave coupling and thermal reactivity on the contraction dynamics. The plasma shape and gas temperature are obtained from the emission profile and the Doppler broadening of the 777 nm Op 5 S Ð 5 Pq oxygen triplet, respectively. Based on these observations, three distinct discharge modes are identified in the pressure range of 10 mbar to atmospheric pressure. We find that discharge contraction is suppressed by an absorption cut-off of the microwave field at the critical electron density, resulting in a homogeneous discharge mode below the critical transition pressure of 85 mbar. Further increase in the pressure leads to two contracted discharge modes, one emerging at a temperature of 3000 to 4000 K and one at a temperature of 6000 to 7000 K, which correspond to the thermal dissociation thresholds of CO 2 and CO respectively. The transition dynamics are explained by a thermo-chemical instability, which arises from the coupling of the thermalionization instability to heat transfer resulting from thermally driven endothermic CO 2 dissociation reactions. These results highlight the impact of thermal chemistry on the contraction dynamics of reactive molecular plasmas.
This work addresses plasma chemistry in the core of a vortex-stabilized microwave discharge for CO2 conversion numerically, focusing on the pressure-dependent contraction dynamics of this plasma. A zero-dimensional model is presented for experimental conditions in a pressure range between 60 and 300 mbar and a temperature range between 3000 and 6500 K. Monte Carlo flux (MCF) simulations, which describe electron kinetics, are self-consistently coupled to the plasma chemistry model. The simulation results show that an increase in pressure is accompanied by a transition in neutral composition in the plasma core: from a significant amount of CO2 and O2 at low pressures to a O/CO/C mixture at high pressures, the composition being determined mostly by thermal equilibrium and by transport processes. The change of temperature and composition with pressure lead to higher ionisation coefficient and more atomic ion composition in the plasma core. These changes result in an increase in ionisation degree in the plasma core from 10−5 to 10−4. These factors are shown to be fundamental to drive contraction in the CO2 microwave discharge.
Motivated by environmental applications such as synthetic fuel synthesis, plasma-driven conversion shows promise for efficient and scalable gas conversion of CO 2 to CO. Both discharge contraction and turbulent transport have a significant impact on the plasma processing conditions, but are, nevertheless, poorly understood. This work combines experiments and modeling to investigate how these aspects influence the CO production and destruction mechanisms in the vortex-stabilized CO 2 microwave plasma reactor. For this, a two-dimensional axisymmetric tubular chemical kinetics model of the reactor is developed, with careful consideration of the nonuniform nature of the plasma and the vortexinduced radial turbulent transport. Energy efficiency and conversion of the dissociation process show a good agreement with the numerical results over a broad pressure range from 80 to 600 mbar. The occurrence of an energy efficiency peak between 100 and 200 mbar is associated with a discharge mode transition. The net CO production rate is inhibited at low pressure by the plasma temperature, whereas recombination of CO to CO 2 dominates at high pressure. Turbulence-induced cooling and dilution of plasma products limit the extent of the latter. The maxima in energy efficiency observed experimentally around 40% are related to limits imposed by production and recombination processes. Based on these insights, feasible approaches for optimization of the plasma dissociation process are discussed.
Three dimensional electromagnetic modelling of a free-standing CO 2 microwave plasma has been performed, by describing the plasma as a dielectric medium. The relative permittivity and conductivity of the medium are parametrised. The waveguide geometry from experiment, including the tuner, is put into the model, knowing that this corresponds to maximum power transfer of the microwave generator to the plasma under plasma impedance matching conditions. Two CO 2 plasma discharge regimes, differing mainly in pressure, input power and temperature, have been studied. The model's validity has been checked through study of materials of known conductivity. From measurements of the neutral gas temperature and the plasma electron density profile, the reduced electric field is determined. From the parametrisation of the dielectric properties, a range for the effective electron-neutral collision frequency for momentum transfer is estimated. The results for the reduced electric field and the range of the electron neutral collision frequency obtained, are consistent as verified by simulations using BOLSIG+. In addition, from this comparison it is possible to narrow down the range of the collision frequencies, and to estimate the electron temperature. The reduced electric field lies between 80 and 180 Td for the relatively low pressure, low input power, the so-called 'diffuse' regime. For the relatively high pressure, high input power ('contracted') regime it lies between 10 and 60 Td. The normalised collision frequency lies between 1.6 and 2.3 for the diffuse regime, while for the contracted regime it lies between 2 and 3. The electron temperature ranges from 2 to 3 eV for the diffuse regime, and from 0.5 to 1 eV for the contracted regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.