The impulse excitation technique (IET), which is presently a precise and reliable technique for measuring dynamic moduli at room temperature, has been adapted to measure dynamic flexural modulus at temperatures in the range of 25° to 300 'c. This modified technique involves a sensitive microphone and electronics to record and analyze the sound waves emitted from a specimen vibrating in the fundamental flexural mode. The fundamental resonant frequency and geometry of the specimen are used to obtain the modulus. The location ofthe microphone relative to the specimen is critical and is a major factor once the specimen is placed within the heated environment. Problems were identified and solved, and test data for aluminum are presented to support the modification ofthe lET for use at elevated temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.