Convective heat transfer can be enhanced by changing flow geometry and/or by enhancing thermal conductivity of the fluid. In this work, CFD modelling of horizontal straight and curved channel with square cross section were presented to investigate the effect of hybrid nanofluids on turbulent forced convective heat transfer. This study proposes simultaneous passive heat transfer enhancement by combining the geometry effect using 0.1% graphene nanoplatelets-silver hybrid nanofluids (GNP–Ag) inflow in straight and curved channel. The results showed that the average Nusselt number is generally higher for curved channel with hybrid nanofluid when compared with straight square channel. Moreover, for 0.1% of GNP–Ag hybrid nanofluid improvement is 22.61% and 34.78% for straight channel and 27.43% and 39.52 for curved channel at the Reynolds number of 5,000 and 17,500, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.