In the present paper, we report on the results of various thermodynamic properties of 3C-SiC at high pressure and temperature using first principles calculations. We use the plane-wave pseudopotential density functional theory as implemented in Quantum ESPRESSO code for calculating various cohesive properties in ambient condition. Further, ionic motion at a finite temperature is taken into account using the quasiharmonic Debye model. The calculated thermodynamic properties, phonon dispersion curves, and phonon densities of states at different temperatures and structural phase transitions at high pressures are found to be in good agreement with experimental and other theoretical results.
Commonly employed quasiharmonic approximation (QHA) is inadequate to account for intrinsic anharmonism such as phonon-phonon interaction, vacancy contribution, etc. Though anharmonic contributions are important at high temperatures and low pressure, complete ab initio calculations are scanty due largely to laborious computational requirements. Nevertheless, some simple semi-empirical schemes can be used effectively to incorporate the anharmonism. In this regards, in the present study we have proposed a simple computational scheme to include the effect of vacancy directly into the description within the mean-field potential approach, which calculates vibrational free energy of ions. Validity of the scheme is verified by taking calcium oxide as a test case. Equilibrium properties at (T,P) = (0,0) condition is obtained within the tight-binding second-moment approximation (TB-SMA), whose parameters were determined through first principles density functional theory. Kohn-Sham equations for core electrons were solved using ultrasoft plane-wave pseudopotential employing the generalized gradient approximation for exchange and correlation. Present findings for thermal expansion and high-T EOS clearly show perceptible improvement over the case when vacancy contribution was not included. Some related thermodynamic properties are also calculated and compared with the available experimental and theoretical data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.