A novel linear amphoteric terpolymers based on neutral monomer — N-isopropylacrylamide (NIPAM), ani- onic monomer — 2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt (AMPS), and cationic mono- mer — (3-acrylamidopropyl) trimethylammonium chloride (APTAC) were synthesized by free-radical polymerization in aqueous solution and characterized by methods of 1H NMR and FTIR spectroscopy, TGA, GPC, Dynamic light scattering (DLS) and zeta-potential. The thermal and salt sensitivity of amphoteric ternary polymers of various compositions, particularly, [NIPAM]:[AMPS]:[APTAC] = 90:2.5:7.5; 90:5:5; 90:7.5:2.5 mol.% were studied in aqueous and aqueous-salt solutions in the temperature range from 25 to 60 C and at the NaCl ionic strength interval from 10–3 to 1M. It was found that due to hydrophobic/hydrophilic balance, the temperature dependent conformational and phase change of macromolecular chains becomes sensitive to salt addition and allows the fine-tuning of the phase transition. In aqueous and aqueous-salt solutions, the average hydrodynamic size of amphoteric terpolymers is varied from 8 to 300 nm exhibiting bimodal distribution at room temperature. The number average (Mn) and weight average (Mw) molecular weights, polydispersity index (PDI), and zeta-potentials of amphoteric terpolymers in aqueous solu- tions were determined
Polyampholyte nanogels based on N-isopropylacrylamide (NIPAM), (3-acrylamidopropyl) trimethylammonium chloride (APTAC) and 2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt (AMPS) were synthesized via conventional redox-initiated free radical copolymerization. The resultant nanogels of various compositions, specifically [NIPAM]:[APTAC]:[AMPS] = 90:5:5; 90:7.5:2.5; 90:2.5:7.5 mol.%, herein abbreviated as NIPAM90-APTAC5-AMPS5, NIPAM90-APTAC7.5-AMPS2.5 and NIPAM90-APTAC2.5-AMPS7.5, were characterized by a combination of 1H NMR and FTIR spectroscopy, TGA, UV–Vis, DLS and zeta potential measurements. The temperature and salt-responsive properties of amphoteric nanogels were studied in aqueous and saline solutions in a temperature range from 25 to 60 °C and at ionic strengths (μ) of 10−3 to 1M NaCl. Volume phase transition temperatures (VPTT) of the charge-balanced nanogel were found to reach a maximum upon the addition of salt, whereas the same parameter for the charge-imbalanced nanogels exhibited a sharp decrease at higher saline concentrations. A wide bimodal distribution of average hydrodynamic sizes of nanogel particles had a tendency to transform to a narrow monomodal peak at elevated temperatures and higher ionic strengths. According to the DLS results, increasing ionic strength results in the clumping of nanogel particles.
Cross-linked polyampholyte nanogels consisting of neutral N-isopropylacrylamide (NIPAM), negatively charged sodium salt of 2-acrylamido-2-methylpropanesulfonate (AMPS), and positively charged (3-acryl-amidopropyltrimethylammonium chloride (APTAC) monomers were synthesized via conventional redox ini-tiated free radical copolymerization using N,N-methylenebis(acrylamide) (MBAA) as a crosslinking agent. The resulting nanogels were characterized by means of FTIR and 1H NMR spectroscopy, dynamic light scat-tering (DLS) and zeta-potential measurements. Surface morphology was analyzed using scanning electron microscopy. Due to the presence of thermally responsive NIPAM units and varying molar ratios of anionic (AMPS) and cationic (APTAC) units, the resulting nanogels were responsive to multiple stimuli in aqueous media and can be used for controlled delivery of dyes. Thus, the NIPAM90-APTAC7.5-AMPS2.5 nanogel with an excess of the cationic units was chosen for immobilization of the anionic dye, methyl orange (MO), whereas the NIPAM90-APTAC2.5-AMPS7.5 nanogel with an excess of the anionic units was chosen for immo-bilization of the cationic dye, methylene blue (MB). The release kinetics of the dyes from the nanogel was studied depending on the phase transition temperature and the salt content. Mechanism of the dye release from the nanogel matrix was determined using the Ritger-Peppas equation. Disappearance of the ionic con-tacts between the charged groups of the nanogels and the ionic dyes was suggested to be the main reason for the diffusion of the dyes through the dialysis membrane into external solution.
Three different nanogels possessing anionic, cationic and amphoteric character were synthesized via conven-tional redox initiated free radical copolymerization of N-isopropylacrylamide (NIPAM), 2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt (AMPS) and (3-acrylamidopropyl) trimethylammonium chloride (APTAC). The negatively charged [NIPAM]:[AMPS] = 90:10 mol.%, positively charged [NIPAM]:[APTAC] = = 90:10 mol.%, and charge-balanced amphoteric nanogels [NIPAM]:[APTAC]:[AMPS] = 90:5:5 mol.% ab-breviated as NIPAM90-AMPS10, NIPAM90-APTAC10, and NIPAM90-APTAC5-AMPS5, respectively, were characterized by FTIR spectroscopy, TGA, UV-Vis spectroscopy and DLS measurements. The temperature and salt responsive properties of nanogels in aqueous and aqueous-salt solutions were studied in the tempera-ture range of 25–60 °C and ionic strength (μ) of 0.001–1.0 M NaCl. Anionic NIPAM90-AMPS10 and cationic NIPAM90-APTAC10 nanogels, exhibit a pronounced polyelectrolyte effect in aqueous-salt solution due to screening of the negative or positive charges by low-molecular-weight salt. Whereas the charge-balanced amphoteric nanogel NIPAM90-APTAC5-AMPS5 exhibits an antipolyelectrolyte effect due to the screening of electrostatic attraction between opposite charges by low-molecular-weight salt. The difference between the temperature-dependent behaviors of anionic, cationic and amphoteric nanogels is explained by shrinking (polyelectrolyte effect) and expanding (antipolyelectrolyte effect) of macromolecular chains in aqueous-salt solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.