Severe illness caused by Coronavirus disease 2019 (COVID-19) is characterized by an overexuberant inflammatory response resulting in acute respiratory distress syndrome (ARDS) and progressive respiratory failure (1). Rhesus theta (θ) defensin-1 (RTD-1) is a macrocyclic host defense peptide exhibiting antimicrobial and immunomodulatory activities. RTD-1 treatment significantly improved survival in murine models of a severe acute respiratory syndrome (SARS-CoV-1) and endotoxin-induced acute lung injury (ALI) (2, 3). This investigation aimed to characterize the preclinical pharmacokinetics and safety of intravenous (i.v.) RTD-1. Based on the lack of adverse findings, the no-observed-adverse-effect-level (NOAEL) was established at 10 mg/kg/day in rats and 15 mg/kg/day in monkeys. Analysis of single ascending dose studies in both species revealed greater than dose-proportional increases in area under the curve (AUC 0-∞ ), (e.g. 8-fold increase from 5 mg/kg to 20 mg/kg in rats) suggestive of nonlinear PK. The volume of distribution (Vss) ranged between 550 and 1,461 mL/kg, indicating extensive tissue distribution, which was validated in a biodistribution study of [ 14 C]-RTD-1 in rats. Based on interspecies allometric scaling, the predicted human clearance and Vss are 6.48 L/h and 28.0 L for an adult (70 kg). To achieve plasma exposures associated with therapeutic efficacy established in a murine model of ALI, the estimated human equivalent dose (HED) is between 0.36 and 0.83 mg/kg/day. The excellent safety profile demonstrated in these studies, and the efficacy observed in the murine models support the clinical investigation of RTD-1 for the treatment of COVID-19 or other pulmonary inflammatory diseases.
Vicious cycles of chronic airway obstruction, lung infections with Pseudomonas aeruginosa, and neutrophil-dominated inflammation contribute to morbidity and mortality in cystic fibrosis (CF) patients. Rhesus theta defensin-1 (RTD-1) is an antimicrobial macrocyclic peptide with immunomodulatory properties. Our objective was to investigate the anti-inflammatory effect of RTD-1 in a murine model of chronic P. aeruginosa lung infection. Mice received nebulized RTD-1 daily for 6 days. Bacterial burden, leukocyte counts, and cytokine concentrations were evaluated. Microarray analysis was performed on bronchoalveolar lavage fluid (BALF) cells and lung tissue homogenates. In vitro effects of RTD-1 in THP-1 cells were assessed using quantitative reverse transcription PCR, enzyme-linked immunosorbent assays, immunoblots, confocal microscopy, enzymatic activity assays, and NF-κB-reporter assays. RTD-1 significantly reduced lung white blood cell counts on days 3 (−54.95%; p = 0.0003) and 7 (−31.71%; p = 0.0097). Microarray analysis of lung tissue homogenates and BALF cells revealed that RTD-1 significantly reduced proinflammatory gene expression, particularly inflammasome-related genes (nod-like receptor protein 3, Mediterranean fever gene, interleukin (IL)-1α, and IL-1β) relative to the control. In vitro studies demonstrated NF–κB activation was reduced two-fold (p ≤ 0.0001) by RTD-1 treatment. Immunoblots revealed that RTD-1 treatment inhibited proIL-1β biosynthesis. Additionally, RTD-1 treatment was associated with a reduction in caspase-1 activation (FC = −1.79; p = 0.0052). RTD-1 exhibited potent anti-inflammatory activity in chronically infected mice. Importantly, RTD-1 inhibits inflammasome activity, which is possibly a downstream effect of NF-κB modulation. These findings support that this immunomodulatory peptide may be a promising therapeutic for CF-associated lung disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.