A software environment was developed for computer-aided design of optimal throttle hydraulic synchronization systems of actuators of various functional purposes operating under conditions of external alternating-sign force effects. The criterion of an optimization procedure was the minimization of a mismatch time of relative movement of actuators during operation. A compute core of an object-oriented code was constructed on the basis of a dynamic mathematical model of a synchronization system consisting of four power cylinders. A model problem was solved with the help of the created software environment. This model problem demonstrated the efficiency of the proposed multidimensional optimization process. The methodology was based on the use of the well-known heuristic method (binary coded genetic algorithm) and the subsequent improvement (in the sense of a given objective functional) of the obtained solution by a method on the basis of the Hooke-Jeeves algorithm. Recommendations on the practical application of the software and mathematical support for achieving the best convergence to the extreme value of a vector of controlled parameters were formulated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.