The self-recombination reactions of 4-aminophenyl cations and parent phenyl cations, each in ground triplet states, are studied within the framework of density functional theory. Only the total zero spin (singlet state) is chosen, as the quintet and triplet counterparts are nonreactive in these systems. The recombination products are the benzidine and biphenyl doubly charged cations. These species are unexpectedly stable. The transition state of the 4-aminophenyl cations reaction is located at the distance of about 4.0 Å between the ipso-carbon atoms. The activation barrier is predominantly formed by electrostatic repulsion between two cations and is estimated to be 27.6 kcal mol 21 [B3LYP/6-3111G(d,p)]. Similar results are obtained for the phenyl cations recombination. The general importance of the participation of other aryl cations in analogous organic reactions is discussed. V C 2013 Wiley Periodicals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.