The article deals with the issues of the 3D impellers strength analysis for the different centrifugal compressors. Two air compressors are considered, the first for General industrial use, the second for turbocharging the internal combustion engine. The third compressor is designed for the turboexpander unit that operating at high pressure medium. The materials of the impellers were steel, titanium and aluminum alloys. The expediency of using the Fluid-Structure Interaction approach for the strength analysis is considered for these compressors. With the FSI approach, a coupled CFD-FEA solution is performed. Gas-dynamic forces from the medium pressure are taken into account in the impeller strength or vibration analysis. The Ansys package is selected as the program for analysis. CFD models are built and configured in the Ansys CFX. The FEA solution carried out in the Ansys Static structural. The results of strength analysis are compared with and without pressure forces for all impellers. As a result, there were no significant differences in the two solutions for the air compressors. However, for high-pressure compressors, the results of the coupled solution showed the need to take into account the CFD solution. Based on the obtained data, a graph of the reliability coefficient dependence on the increase in the suction pressure in the range from 1 to 100 bar is plotted.
Для существенного уменьшения количества модельных и натурных испытаний геометрия проточных частей насосов уточняется численным экспериментом в программном пакете STAR CCM+ 6.04. Для использования результатов компьютерного моделирования численная модель должна быть верифицирована физическим экспериментом. Для этих целей на кафедре "Гидромеханика, гидромашины и гидропневмоавтоматика" МГТУ им. Н.Э. Баумана проводились испытания проточных частей насосов НМ на уменьшенным моделях, а также проводилось их численное моделирование. Была составлена численная модель проточной части модели насоса по исходной 3D-геометрии, использованной при изготовлении проточной части на 3D принтере. Рисунок 1-3D-геометрия проточной части модели насоса НМ2500-230
Currently, methods of numerical modelling are widely used. They are especially widely used in the design of turbo compressors. For the specific task of designing new flowing parts of a centrifugal compressor, it is not recommended to deviate from the canonical design techniques, but it is preferable to supplement them with numerical methods. This article is devoted to the end two-element stage investigation of a centrifugal compressor with an axial radial impeller; the stage main dimensions were obtained using the method of V.F. Rice. In order to obtain the necessary pressure characteristics and determine the dependence for the absolute velocity non-uniform distribution at the inlet to the axial radial impeller, the flow path main dimensions were optimized using numerical calculation methods. The calculation was performed using the SST turbulence model using computational gas dynamics methods in the ANSYS CFX software environment. Based on the optimization results, five compressor designs and corresponding characteristics were obtained. The absolute velocity distribution nature at the inlet to the centrifugal compressor axial radial impeller for five flow path variants is investigated. Empirical dependences are obtained for the deviation of the absolute velocity at the inlet in the hub section axial radial impeller and the absolute velocity deviation at the shroud from the absolute velocity at the average diameter based on the results of a numerical experiment. Recommendations are made for further absolute velocity distributions investigating at the inlet to the compressor impeller.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.