The foundations of classical homogenization techniques, which aim at predicting the overall behavior of heterogeneous materials from that of their constituents, are reviewed. After introductory definitions and a methodological preamble, attention is focused on linear elasticity, for which the basic principles of estimating and bounding the overall properties are introduced and illustrated. In this context, special recourse is made for that to the solution of the inclusion and inhomogeneity problems as reported by Eshelby in 1957. Approaches proposed recently to account in a better way for the structural morphology of the considered materials are briefly mentioned. The case of linear elasticity with eigenstrains is then discussed: several applications, including heterogeneous thermoelasticity, can be investigated within this framework. Finally, outlines of nonlinear micromechanics are briefly reported from a historical point of view: from rate-independent elastoplasticity to nonlinear elasticity and viscoplasticity, examples of a fruitful interaction between the search for new estimates and the derivation of rigorous bounds are given and the crucial question of the description of intraphase heterogeneity is emphasized. Viscoelastic coupling and rate-dependent effects are briefly discussed in conclusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.