The combination of momentum microscopy (high resolution imaging of the Fourier plane) with an imaging spin filter has recently set a benchmark in k-resolution and spin-detection efficiency. Here we show that the degree of parallelization can be further increased by time-of-flight energy recording. On the quest towards maximum information (in earlier work termed "complete" photoemission experiment) we have studied the prototypical high-Z fcc metal iridium. Large partial bandgaps and strong spin-orbit interaction lead to a sequence of spin-polarized surface resonances. Soft X-rays give access to the 4D spectral density function ρ (E,k,k,k) weighted by the photoemission cross section. The Fermi surface and all other energy isosurfaces, Fermi velocity distribution v(k), electron or hole conductivity, effective mass and inner potential can be obtained from the multi-dimensional array ρ by simple algorithms. Polarized light reveals the linear and circular dichroism texture in a simple manner and an imaging spin filter exposes the spin texture. One-step photoemission calculations are in fair agreement with experiment. Comparison of the Bloch spectral function with photoemission calculations uncovers that the observed high spin polarization of photoelectrons from bulk bands originates from the photoemission step and is not present in the initial state.
Spin-momentum locking of surface states has attracted great interest in recent years due to envisioned technological applications in the field of spintronics. Normal metal surfaces like W(1 1 0) and Ir(1 1 1) show surface states with energy dispersions and spin-polarization textures, which are reminiscent of topologically non-trivial surface states. In order to understand this phenomenon the connection of bulk and surface states has to be explored. Using time-of-flight momentum microscopy with soft x-ray excitation, we present a comprehensive analysis of the bulk bands of W and Ir. Surface states are determined by the same method with photon excitation in the vacuum ultraviolet region. The superposition of both spectral densities reveals the hosting of surface states within the gap structure of bulk bands projected on the surface Brillouin zone. Quantitative differences in the extension of experimental and theoretical local band gaps indicate an underestimation of electron correlation effects in theory.
Time-of-flight momentum microscopy reveals sixfold symmetric sharp features of decreased intensity (dark lines) in constant-energy maps for clean Ir(111) and graphene/Ir(111). The dark lines have been observed for p-and s-polarized light in the photon-energy range of 20-27 eV and result from scattering of photoelectrons at the surface potential barrier. The phenomenon is strongly related to threshold effects in low-energy electron diffraction. A quantitative analysis of the dark lines' positions shows that the relevant reciprocal-lattice vector corresponds to the lattice of the topmost layer (in our case graphene and Ir, respectively). The dark lines appear in the momentum patterns only in a certain photon-energy range satisfying the additional condition that the electron wavelength matches the lattice periodicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.