Aims/HypothesisVisceral obesity holds a central position in the concept of the metabolic syndrome characterized by glucose intolerance in humans. However, until now it is unclear if obesity by itself is responsible for the development of glucose intolerance.MethodsWe have used a novel polygenic mouse model characterized by genetically fixed obesity (DU6) and addressed age- and high fat diet-dependent glucose tolerance.ResultsPhenotype selection over 146 generations increased body weight by about 2.7-fold in male 12-week DU6 mice (P<0.0001) if compared to unselected controls (Fzt:DU). Absolute epididymal fat mass was particularly responsive to weight selection and increased by more than 5-fold (P<0.0001) in male DU6 mice. At an age of 6 weeks DU6 mice consumed about twice as much food if compared to unselected controls (P<0.001). Absolute food consumption was higher at all time points measured in DU6 mice than in Fzt:DU mice. Between 6 and 12 weeks of age, absolute food intake was reduced by 15% in DU6 mice (P<0.001) but not in Fzt:DU mice. In both mouse lines feeding of the high fat diet elevated body mass if compared to the control diet (P<0.05). In contrast to controls, DU6 mice did not display high fat diet-induced increases of epididymal and renal fat. Control mice progressively developed glucose intolerance with advancing age and even more in response to the high fat diet. In contrast, obese DU6 mice did neither develop a glucose intolerant phenotype with progressive age nor when challenged with a high fat diet.Conclusions/InterpretationOur results from a polygenic mouse model demonstrate that genetically pre-determined and life-long obesity is no precondition of glucose intolerance later in life.
We have investigated molecular mechanisms for muscle mass accretion in a non-inbred mouse model (DU6P mice) characterized by extreme muscle mass. This extreme muscle mass was developed during 138 generations of phenotype selection for high protein content. Due to the repeated trait selection a complex setting of different mechanisms was expected to be enriched during the selection experiment. In muscle from 29-week female DU6P mice we have identified robust increases of protein kinase B activation (AKT, Ser-473, up to 2-fold) if compared to 11- and 54-week DU6P mice or controls. While a number of accepted effectors of AKT activation, including IGF-I, IGF-II, insulin/IGF-receptor, myostatin or integrin-linked kinase (ILK), were not correlated with this increase, phosphatase and tensin homologue deleted on chromosome 10 (PTEN) was down-regulated in 29-week female DU6P mice. In addition, higher levels of PTEN phosphorylation were found identifying a second mechanism of PTEN inhibition. Inhibition of PTEN and activation of AKT correlated with specific activation of p70S6 kinase and ribosomal protein S6, reduced phosphorylation of eukaryotic initiation factor 2α (eIF2α) and higher rates of protein synthesis in 29-week female DU6P mice. On the other hand, AKT activation also translated into specific inactivation of glycogen synthase kinase 3ß (GSK3ß) and an increase of muscular glycogen. In muscles from 29-week female DU6P mice a significant increase of protein/DNA was identified, which was not due to a reduction of protein breakdown or to specific increases of translation initiation. Instead our data support the conclusion that a higher rate of protein translation is contributing to the higher muscle mass in mid-aged female DU6P mice. Our results further reveal coevolution of high protein and high glycogen content during the selection experiment and identify PTEN as gate keeper for muscle mass in mid-aged female DU6P mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.