We discuss a three-dimensional displacement model of one miscible compressible fluid by another in a porous medium. The motion is modeled by a nonlinear system of parabolic type coupling the pressure and the concentration. We give an existence result of weak solutions for a model with diffusion and dispersion, using the Schauder fixed point theorem. We also study a model in the absence of diffusion and dispersion. The system becomes of parabolic-hyperbolic type, the existence of global weak solutions is then obtained through a compensated compactness argument.
We study the asymptotic behavior, with respect to high Péclet numbers, of the solutions of the nonlinear elliptic-parabolic system governing the displacement of one incompressible fluid by another, completely miscible with the first, in a porous medium. Using compensated compactness techniques, we obtain the existence of a global weak solution to the nonlinear degenerate elliptic-parabolic system modelling the flow when the molecular diffusion effects are neglected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.